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ABSTRACT

The overarching objective of this dissertation is the development of feedback control frameworks

for uncertain dynamical systems that are subject to spatial and/or temporal constraints. These spatiotemporal

constraints usually arise from the physical and/or performance characteristics associated with a considered

dynamical system in safety-critical applications, where synthesis and analysis of feedback control laws are

not trivial. Specifically, the proposed control architectures in this dissertation mainly contribute to the model

reference adaptive control and finite-time control literature. In particular, unlike existing model reference

adaptive control approaches that are not capable of enforcing user-defined performance guarantees without

an ad-hoc tuning process, the proposed control architectures utilize an error-dependent learning rate that

enables a control designer to assign a user-defined performance bound to the system trajectories. In addition,

the convergence time of the existing finite-time controllers either depends on the initial conditions of the

system or the upper bound on the system uncertainties; hence, this convergence time cannot be strictly

assigned by the control designer. The proposed finite-time control algorithms in this dissertation utilize a

time transformation technique to address this challenge, where the resulting convergence time is independent

of the initial conditions and the knowledge of upper bound of the system uncertainties.

Research in adaptive control theory has demonstrated the capabilities of these feedback algorithms

in suppressing the effects of adverse conditions resulting from exogenous disturbances, imperfect system

modeling, degraded modes of operation, and changes in system dynamics. Yet, not only standard adaptive

controllers usually yield to conservative performance bound on the system error signal, but also they require

the knowledge of the upper bound on the system uncertainties to specify such a bound. Therefore, a major

challenge in standard adaptive control algorithms is their inability to address control problems with a-priori

given spatial constraints. In this dissertation, this critical issue is addressed by introducing the set-theoretic

model reference adaptive control architecture. This approach utilizes so-called generalized restricted po-

tential functions by incorporating a system error-dependent learning rate in the adaptation process. The

resulting control architecture ensures that the system error signal evolves in a user-defined compact set for
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all time without the requirement of the knowledge of the upper bound on the system uncertainties. For

the case where the system uncertainty is unstructured, a new neuroadaptive control architecture predicated

on a set-theoretic treatment is then studied such that the closed-loop system trajectories are guaranteed to

stay within the compact set without violating the universal function approximation property. As another

contribution in this dissertation, the set-theoretic model reference is generalized to enforce a time-varying

performance bound on the norm of system error vector. This gives a control designer the flexibility to control

the closed-loop system performance as desired on different time intervals separately. In practice, a subset of

system trajectories can be more critical than the others. Hence, it is desired not only to enforce a performance

bound on the entire norm of the system error, but also to be able to adjust the resulting performance bound

specifically for that critical subset. To address this problem, a command governor approach is embedded in

the set-theoretic model reference adaptive control architecture. Actuator dynamics and actuator failures are

two of the most important considerations for implementing any control algorithm. To this end, extensions

of the set-theoretic model reference adaptive control architecture are proposed, where it ensures the system

stability as well as the user-defined performance guarantee despite the presence of actuator dynamics or

actuator failures during an operation.

The applications of the proposed set-theoretic model reference adaptive control is also studied

within the context of this dissertation. Specifically, this framework is implemented on a generic transport

model developed by NASA on both longitudinal and lateral-directional dynamics. In addition, the proposed

set-theoretic model reference adaptive control is evaluated on an aerospace testbed, which is configured as

a conventional dual-rotor helicopter for enforcing constant and time-varying performance bounds. Practical

implementation considerations for the set-theoretic model reference adaptive control architecture is also

studied. In particular, a generalization of this control architecture with dead-zone effect is proposed where

it stops the adaptation process inside the dead-zone, but it still ensures that the norm of the system error

is evolving inside a user-defined performance bound. The set-theoretic model reference adaptive control is

also augmented at the inner-loop control structure of human-in-the-loop control architectures to provide a

sufficient stability condition for the overall physical system.

Another major contribution of this dissertation is to address control problems with temporal con-

straints. This problem is considered in the context of networked multiagent systems, where the control

objective is to drive the agents to a time-varying leader within a user-defined finite time interval. To this end,

using a time transformation approach, the desired user-defined finite-time interval of interest is converted
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into a stretched infinite-time interval. The robustness properties of the proposed control algorithm, as well as

the finite-time convergence guarantees is established in this new infinite-time interval. One can then readily

transfer back the results into the original finite time interval of interest. The effects of sensor uncertainties are

also studied in this dissertation, where they can significantly deteriorate the achievable closed-loop system

performance in networked multiagent systems. These uncertainties may arise due to low sensor quality,

sensor failure, sensor bias, or detrimental environmental conditions. To tackle this challenge, a resilient

distributed control algorithm is designed to mitigate the effect of sensor uncertainties.

Finally, a unified control architecture is proposed to simultaneously address the problem of spa-

tiotemporal constraints for uncertain dynamical systems. The proposed control architecture, ensures that

the agents converge to a time-varying leader at a user-defined finite time of interest, while guaranteeing

user-defined performance bounds on the system error trajectories.

The stability and performance properties for all of the aforementioned control architectures are rig-

orously established using system-theoretic methods and their efficacy are demonstrated through illustrative

numerical examples.
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CHAPTER 1: INTRODUCTION

This chapter presents a summary of the developments made throughout this dissertation. Building

on the model reference adaptive control literature, the proposed control architectures seek to improve the

overall system stability, robustness, and performance characteristics of uncertain physical systems. In

particular, the primary goal in this dissertation is to develop control architectures for physical systems

subject to constraints to achieve user-defined system performance guarantees, where these constraints can

be associated with space or time (i.e., spatiotemporal constraints).

The spatial constraints usually result from the structural and/or operational limitations in safety-

critical applications. In such applications, unpredictable deviations from an ideal system response, which is

characterized to obey certain spatial limits, is not desired and needs to be avoided in practice. Therefore,

a feedback control design must have the ability to keep the system trajectories close enough to the ideal

reference trajectories to ensure that the system operates within a safe operating zone. In the light of

recent developments in adaptive control algorithms, current practice relies heavily on either excessive

vehicle testing for verification purposes or development of the tools to validate adaptive control algorithms.

However, the excessive vehicle testing only provides limited performance guarantees for the specific tested

conditions such as the fixed set of initial conditions, user commands, and possible failure and adversary

profiles [5–7]. In addition, the existing tools for validating adaptive control algorithms require a-priori and

almost complete knowledge of upper and lower bounds on the system uncertainties; otherwise, they yield

in conservative performance guarantees [8, 9]. Hence, these bounds are not necessarily always practical

in establishing performance guarantees on the system errors denoting the distance between the uncertain

system dynamics and a given reference model (see Section 1.1 for more details).

On the other hand, the temporal constraints are generally related to time-critical applications where

it is necessary to accomplish a given task over a desired time interval. It should be noted that the convergence

time achieved through classical finite-time control architectures depends on the initial conditions of the

considered physical system (see for example, [10, 11]); hence, the convergence time cannot be assigned as
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a user-defined parameter for all initial conditions of the system. To address this challenge in time-critical

applications, fixed-time finite-time control architectures (see for example, [12, 13]) and predefined-time

finite-time control architectures (see for example, [14, 15]) are proposed. Yet, in these results, either the

calculated upper bound on the convergence time do not necessarily hold globally for all initial conditions and

they can be conservative [12], or they can require a strict knowledge of the upper bounds of the considered

class of system uncertainties in their design [13].

In what follows, first a concise overview of model reference adaptive control approach is presented.

The contributions of this dissertation in developing feedback algorithms for dynamical systems subject to

spatiotemporal constraints are then introduced.

1.1 Model Reference Adaptive Control Architecture

An adaptive controller is a nonlinear control system that utilizes a parameter adjustment mechanism

(i.e., adaptation mechanism or adaptive law) for updating the parameters within the control structure (i.e.,

adaptive parameters). The adaptation characteristic of these controllers makes them a suitable candidate

for controlling uncertain dynamical systems. In fact, decades of research in adaptive control systems has

shown their capability to suppress the effects of adverse conditions resulting from exogenous disturbances,

imperfect dynamical system modeling, degraded modes of operation, and changes in system dynamics.

Adaptive control systems can be broadly classified into two categories; namely, direct and indirect

adaptive control systems. In direct adaptive control systems, the adaptive parameters are updated directly

via an online adaptation mechanism. However, indirect adaptive control systems estimate the unknown

system parameters and use these estimations within the control structure [16, 17]. In this dissertation, direct

adaptive control schemes and in particular, model reference adaptive control systems serve as a base control

system method. In particular, as depicted in Figure 1.1, a model reference adaptive control system consists

of a reference model, an adaptive law, and a controller. Here, the ultimate objective is to design a control

signal u(t) to provide overall system stability and performance, such that the uncertain dynamical system

state x(t) follows an ideal system behavior captured by the reference model system state xr(t) for tracking

the desired command signal c(t). In this control architecture, the controller contains a nominal portion as

well as an adaptive portion. The adaptive parameter are then updated through the adaptive law based on the

deviation of the uncertain system state and the reference model system state; that is, e(t) , x(t)− xr(t). In

2



www.manaraa.com

–

Reference  Model

Uncertain SystemControl System

Adaptive Law

Figure 1.1: Block diagram of a standard model reference adaptive control approach.

addition, the adaptive law utilizes an adaptation gain for scaling the error signal that serves to control the

adaptation rate.

Although model reference adaptive controllers are capable of guaranteeing closed-loop system

stability in the presence of exogenous disturbances and system uncertainties, a crucial problem is their

inability in providing a-priori given, user-defined performance guarantees. In fact, their calculated worst-

case performance bounds based on Lyapunov or Lyapunov-like functions usually depend on the system

uncertainties. Hence, their resulting performance bounds on the system error are often conservative and are

not always practical for addressing control problems with spatial constraints [1].

1.2 Spatial Performance Guarantees

Enforcing performance guarantees on the system state or the system output is referred to as a spatial

constraint problem, which has been the subject of several works in the adaptive control literature [18–27]. In

particular, the authors of [18–20] use an error transformation approach to transform an uncertain dynamical

system subject to spatial constraints into an equivalent form without constraints. However, the result in [18]

is limited to the case where the control signals can access to every element of the state vector, the result in

[19] uses a backstepping adaptive control approach under the assumption that a desired trajectory and its

derivatives are available and all bounded, and the result in [20] utilizes a switching control approach and

enforces constraints only on measurable output signals but not on state vector. Furthermore, [22–26] use

restricted potential functions (i.e., barrier Lyapunov functions) for the systems in strict feedback form and
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in the context of backstepping adaptive control to achieve strict performance guarantees. Finally, the result

in [21] provides performance guarantees under the assumption that system uncertainties are constant.

In the light of above discussions, this dissertation presents a new set-theoretic model reference

adaptive control architecture to enforce a-priori given, user-defined worst-case performance bounds on the

error between the trajectories of an uncertain dynamical system and the desired reference model trajectories.

1.2.1 Set-Theoretic Model Reference Adaptive Control Architecture

This dissertation presents a fundamental contribution to the model reference adaptive control lit-

erature by proposing the set-theoretic model reference adaptive control architecture that has the ability to

enforce a-priori given, user-defined performance guarantees. Unlike the standard model reference adaptive

control architecture that utilizes a constant adaptation rate, an error-dependent adaptation rate is embedded in

the proposed control system. This error-dependent adaptation rate is predicated on a generalized restricted

potential function to auto-tune the adaptive control design. The key characteristic of this new adaptation

mechanism increases the effective learning rate when the system error trajectories get close to the boundaries

of a prescribed user-defined compact set that represents the spatial constraint. Consequently, the system

trajectories are theoretically enforced to evolve in this compact set for all time, without requiring a strict

knowledge of the upper bounds of the system uncertainties. As a byproduct, an upper bound can be

also calculated directly for the adaptive control signals without inducing (excessive) conservatism that only

depends on user-defined design parameters.

As another important contribution of this dissertation, a set-theoretic model reference neuroadaptive

control architecture is proposed in which the well-known system uncertainty parameterization assumption,

as used in, for example, [28–32], is no longer needed. In fact, using neural networks on a compact set

of the real coordinate space, neuroadaptive control systems are able to approximate system uncertainties

with an unknown structure and unknown parameters [33–36]. However, the challenge is to keep the system

trajectories within this compact set such that the universal function approximation property is valid and

the overall system stability is achieved. The proposed control framework ensures that the closed-loop

system trajectories evolve within an a-priori given, user-defined compact set; hence, the universal function

approximation property remains always valid.
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1.2.2 Generalization of the Set-Theoretic Model Reference Adaptive Control Architecture

In practice, usually large magnitude of error signal can be tolerated at the beginning stage of an

applied command, while guaranteeing the overall system stability. However, after the initial transient period,

it is required to track the desired command signal more closely. Therefore, in order to cover a wider class of

spatial constraint problems, two set-theoretic model reference adaptive control architectures are presented

to address time-varying performance guarantees. Specifically, the key feature of this framework gives the

control designer a flexibility to control the closed-loop system performance as desired on different time

intervals (e.g., transient time interval and steady-state time interval).

As noted in Section 1.2.1, the proposed set-theoretic model reference adaptive control architecture

is capable of enforcing user-defined strict performance guarantees on the entire norm of the system error

vector. However, from a practical standpoint (especially when the number of system states gets large), a

subset of system state trajectories can be more critical than the rest due to physical and/or performance

characteristics associated with a problem of interest. As a consequence, it is often desired not only to have

strict guarantees on the norm of the entire system error vector but also to be able to adjust the resulting

worst-case performance bound specifically for that critical subset. To this end, a new model reference

adaptive control architecture predicated on a set-theoretic treatment is developed for enforcing an a-priori

given, user-defined performance bound on the selected subset of dynamical system trajectories.

As it is well-known, when the bandwidth of the system actuator dynamics is not sufficiently high,

the stability of model reference adaptive controllers can be degraded drastically. The hedging method

proposed in [37] is one of the effective approaches for addressing this challenge. In this study, the ideal

reference model is modified by the hedge signal such that the adaptation process becomes independent

from the actuator dynamics [37–39]. The result in [40, 41] generalizes this method and provides sufficient

condition based on linear matrix inequalities such that the modified reference model trajectories, and hence,

the overall closed-loop dynamical system, become stable in the presence of actuator dynamics. However,

due to utilizing the standard model reference adaptive control framework in these studies, the performance

bounds between the uncertain dynamical system trajectories and the ideal reference model trajectories are

conservative and they depends on the system uncertainties (e.g., see Theorem 1.4.1 of [41]). As another

contribution of this dissertation, unlike the results in [40, 41], the proposed set-theoretic model reference

adaptive control architecture is able to enforce a-priori, user-defined performance bounds on the error
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between the uncertain dynamical system trajectories and the modified reference model trajectories. In

addition, it is shown that the error bounds between the ideal reference model trajectories and the uncertain

dynamical system trajectories can be also characterized by this user-defined bound as well as the actuator

bandwidth limit; hence, it is a-priori computable using a given set of adaptive control design parameters.

Actuator failures are another phenomena that can crucially degrade the control system performance

and lead to instability [42–44]. A well-known class of actuator failures is when one or more control surfaces

suddenly become inaccessible and remain at some unknown value. After an actuator failure, an adaptive

control design can reconfigure the remaining control surfaces to recover the system stability and obtain a

desired system performance. The authors of [45–52] propose approaches to deal with actuator failures in

the context of adaptive control systems, among which only the result in [52] establishes strict guarantees

on the closed-loop system performance. Yet, this result utilizes a backstepping procedure and hold under

the assumption that a desired trajectory and its derivatives are available (and are all bounded). As another

generalization to the set-theoretic model reference adaptive control architecture introduced in Section 1.2.1,

a new control architecture is proposed to achieve strict closed-loop system performance guarantees in the

presence of finite number of actuator failures. The actuators may fail based on a common failure model

in which they can get stuck at some unknown values at some unknown time; hence, the actuator failure

structure is unknown in terms of time, pattern, and value.

1.2.3 Applications of the Set-Theoretic Model Reference Adaptive Control Architecture

In this dissertation, four results are presented as applications of the proposed set-theoretic model

reference adaptive control architecture introduced in Sections 1.2.1 and 1.2.2. First, an application of this

control framework is illustrated on a generic transport model developed by NASA. Specifically, the set-

theoretic adaptive controllers are designed for both longitudinal and lateral-directional dynamics that enforce

the norm of system error vector to evolve within a user-defined compact set.

Second, experimental results of the set-theoretic model reference adaptive control architecture on

an aerospace testbed that is configured as a conventional dual-rotor helicopter, is presented. In particular,

this framework is implemented with a constant user-defined bound to enforce a uniform performance bound

on the system error for all time. In addition, the set-theoretic model reference adaptive control architecture

with time-varying performance bounds is applied that empowers a control designer to assign the closed-loop
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system performance as desired on different time intervals (e.g. transient time interval and steady-state time

interval) and also to handle a possible system initialization error that can happen in practice.

Third, from a practical stand point, since small system errors usually contain high-frequency resid-

ual content of exogenous disturbances and/or measurement noise, a new set-theoretic model reference

adaptive control architecture with dead-zone effect is proposed. The key feature of this framework stops

the adaptation process inside a dead-zone, while keeping the norm of the system error less than a-priori,

user-defined worst-case performance bound. In addition, when this bound is time-varying, the dead-zone

embedded in this control algorithm also scales its size automatically which provides flexibility to control

the closed-loop system performance as desired on different time intervals. Experimental implementations

on the aerospace testbed further demonstrate the efficacy of the proposed method.

Finally, the set-theoretic model reference adaptive control is also augmented at the inner-loop

control structure of human-in-the-loop control architectures. Specifically, this is motivated by the fact that

the inner loop system errors during the transient phase of adaptively suppressing system uncertainties can

severely affect the human-outer loop interactions. Therefore, the augmented set-theoretic model reference

adaptive control at the inner-loop structure provides sufficient stability condition for the overall physical

system with human dynamics modeled as a linear time-invariant system with human reaction time-delay

where unlike other approaches, this condition does not depend on the system uncertainties.

1.3 Temporal Performance Guarantees

As briefly discussed at the beginning of this chapter, the temporal constraints problems are studied

in the literature in the context of finite-time control systems. Although the classical finite-time control

approaches ensure achieving the control objective within a finite time, their convergence time depends

on the initial conditions of the system [10, 11, 53–60]. This sensitivity can pose a serious limitation in

control applications where the convergence time needs to be defined prior to the design. For these time-

critical applications, fixed-time finite-time control architectures are studied to upper bound the convergence

time independently from the initial conditions [12, 13, 61–65]. However, these calculated bounds do

not necessarily hold globally and/or can be conservative. More importantly, some of these results that

consider system uncertainties require a knowledge of uncertainty upper bounds for stability. To overcome

this limitation, predefined-time finite-time control architectures [14, 15, 66–71] are proposed to guarantee

convergence at a user-defined finite time. While they are promising, these results are limited to sole systems
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or first-order multiagent systems, and more importantly, once again, some of these results that consider

system uncertainties require a knowledge of uncertainty upper bounds for stability [4, 72, 73].

To address the aforementioned limitations, as another major contribution of this dissertation, a new

distributed control algorithm is proposed based on a time transformation technique for uncertain multiagent

systems. The key feature of this control algorithm is to link a user-defined finite-time interval of interest

t ∈ [0,T ) to a stretched infinite-time interval s ∈ [0,∞). This enables a control designer to exploit any

standard system-theoretic tools for synthesis and analysis purposes in this infinite horizon. After establishing

the robustness and convergence properties in this new time domain, these results can be transferred back into

the original finite time interval of interest. In contrast to existing finite-time approaches, it is shown that the

proposed algorithms can preserve a-priori given, user-defined finite-time convergence property regardless

of the initial conditions of the multiagent system and without requiring a knowledge of the upper bounds of

the system uncertainties.

As a byproduct of the control design for uncertain multiagent systems, other type of system uncer-

tainties are also investigated in this dissertation. Specifically, an important class of system uncertainties in

control of multiagent systems is sensor uncertainties, where they can significantly deteriorate the achievable

closed-loop system performance. These uncertainties may arise due to low sensor quality, sensor failure,

sensor bias, or detrimental environmental conditions [74–77]. In addition, sensor uncertainties can be

viewed as sensor measurements corrupted by malicious attacks, that is an important subject in controlling

systems through large-scale, multi-layered communication networks such as cyber-physical systems. To

this end, a new distributed adaptive control architecture is presented for multiagent systems to mitigate the

effect of sensor uncertainties. Two classes of these uncertainties—namely, constant and time-varying sensor

uncertainties—are considered. Asymptotic stability is guaranteed for the constant sensor uncertainties and

uniform ultimate boundedness result is obtained for the case when the sensor uncertainties are time-varying.

1.4 Spatiotemporal Performance Guarantees

Finally, to answer the overall objective of this dissertation; that is, achieving the spatial and temporal

performance guarantees, a unified and novel control architecture is presented to simultaneously address the

problem of spatiotemporal constraints in uncertain dynamical systems. The proposed distributed control

architecture not only ensures that the agents converge to a time-varying leader at a user-defined finite time

of interest (temporal performance guarantee) but also it limits the distance between the state trajectories of

8



www.manaraa.com

agents and their reference state trajectories to be less than the given bounds (spatial performance guarantee).

Unlike other approaches in the literature, the important feature of the proposed distributed control archi-

tecture is that the obtained spatiotemporal performance guarantees are independent of the initial conditions

of agents, and it does not require a strict knowledge of the upper bounds of the considered class of system

uncertainties.

1.5 Organization

The organization of this dissertation is as follows. Chapter 2 presents a set-theoretic model reference

adaptive control architecture for enforcing user-defined performance guarantees to address the spatial con-

straint problem. Chapter 3 generalizes this framework to neuroadaptive control of dynamical systems with

unstructured system uncertainties such that the universal function approximation property is not violated.

Chapter 4 then provides several key extensions of the set-theoretic model reference adaptive control archi-

tecture. Applications of the set-theoretic model reference adaptive control architecture are the introduced in

Chapter 5. Chapter 6 addresses the temporal constraint problem by presenting a novel distributed control

architecture with user-defined finite-time convergence guarantees. Chapter 7 provides further results on

networked multiagent systems for mitigating the effect of sensor uncertainties. Simultaneous spatial and

temporal constraint problem is addressed in Chapter 8. Finally, concluding remarks and future research

directions are presented in Chapter 9.
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CHAPTER 2: A SET-THEORETIC MODEL REFERENCE ADAPTIVE CONTROL

ARCHITECTURE FOR DISTURBANCE REJECTION AND UNCERTAINTY SUPPRESSION

WITH STRICT PERFORMANCE GUARANTEES1

Research in adaptive control algorithms for safety-critical applications is primarily motivated by

the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting

from exogenous disturbances, imperfect dynamical system modeling, degraded modes of operation, and

changes in system dynamics. Although government and industry agree on the potential of these algorithms

in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori,

user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference

adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection

and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller

construction using generalized restricted potential functions. The key feature of this framework allows the

system error bound between the state of an uncertain dynamical system and the state of a reference model,

which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case

performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples

are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control

architecture.

2.1 Introduction

Research in adaptive control algorithms for safety-critical applications is primarily motivated by

the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting

from exogenous disturbances, imperfect dynamical system modeling, degraded modes of operation, and

changes in system dynamics. Although government and industry agree on the potential of these algorithms

in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-

1This chapter is previously published in [1]. Permission is included in Appendix H.
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priori, user-defined performance guarantees with adaptive control algorithms. To address this challenge,

current practice relies heavily on either excessive vehicle testing as a means of performing verification or

development of the tools to validate adaptive control algorithms.

The drawback of excessive vehicle testing is that it only provides limited performance guarantees

for what is tested; the fixed set of initial conditions, user commands, and possible failure and adversary

profiles (see, for example, [5–7]). In addition, the drawback of existing tools for validating adaptive control

algorithms is that such tools can only provide guarantees if there exists a-priori and almost complete knowl-

edge of upper and lower bounds on the unknown gains appearing in system uncertainty parameterizations

and otherwise yield conservative performance guarantees (see, for example, [8, 9]). While these bounds

may be available for some specific applications with low dynamical system complexity, the actual bounds

on the unknown gains may change during operation, for example, when a vehicle undergoes a change in

dynamics as a result of reconfiguration, deployment of a payload, docking, or structural damage [78, 79].

In such circumstances, the performance guarantees obtained from the existing tools can no longer be true.

Therefore, it is important to achieve strict performance guarantees with adaptive control algorithms at the

pre-design stage, instead of relying on excessive vehicle testing and tools to validate their performance

during the post-design stage.

Notable contributions for achieving strict performance guarantees with adaptive control algorithms

include [18–27]. Specifically, [18] use an error transformation approach such that an uncertain dynamical

system subject to performance constraints is transformed into an equivalent form without constraints and

analysis is performed for this equivalent form to show that the uncertain dynamical system satisfies given

performance constraints. Even though the methodology documented in [18] is promising, it is assumed that

the control signals can access to every element of the state vector. This limitation is avoided in [19] by

considering a backstepping adaptive control approach under the assumption that a desired trajectory and its

derivatives are available and all bounded. In addition, the same approach is extended to a generalized class of

uncertain dynamical systems in [20] to enforce constraints on measurable output signals but not on measur-

able state vectors. [21] propose an adaptive control architecture with strict performance guarantees under the

assumption that system uncertainties do not depend on time, where their approach do not directly generalize

to time-varying case to handle exogenous disturbances and changes in system dynamics. Restricted potential

functions (barrier Lyapunov functions) are employed in [22–26] in the context of backstepping adaptive

control to construct a closed-loop dynamical system with strict performance guarantees. Finally, [27] uses
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bounding functions to enforce performance constraints in the context of model reference adaptive control.

Even though this is a promising approach, violation of the performance constraints may happen if the growth

rate of the bounding functions is not sufficiently large.

2.1.1 Contribution

In this paper, we focus on the model reference adaptive control problem of uncertain dynamical

systems in the presence of exogenous disturbances and system uncertainties, where both sources of sys-

tem adversaries can depend on time to capture dynamic environment conditions (e.g., winds or turbulent

flows) and changes in system dynamics (e.g., system reconfiguration, deployment of a payload, docking,

or structural damage). For this problem, the fundamental research contribution of this paper is a new

model reference adaptive control architecture, where its novel characteristic is the capability to enforce

strict performance guarantees at the pre-design stage. Specifically:

i) The key feature of the proposed model reference adaptive controller allows the system error bound

between the state of an uncertain dynamical system and the state of a reference model to be less than

a-priori, user-defined worst-case performance bound (see Theorem 2.3.1). Since this bound is user-

defined, it is practical in the sense that it does not depend on any unknown parameters. Therefore, a

control engineer can establish a guaranteed worst-case performance using the proposed architecture

at the pre-design stage to control uncertain dynamical systems (see Examples 1, 2, and 3). This

is a significant departure from the existing, standard model reference adaptive control approaches,

because their error bounds do depend on unknown parameters, and hence, they cannot provide strict

guarantees. This is the reason why such approaches practically rely on excessive vehicle testing and

tools to validate their performance during the post-design stage based on the collected system data

(see Remarks 2.2.3 and 2.3.2 for additional details).

ii) As a byproduct, we show that an upper bound for the adaptive control signals can be directly calculated

without inducing (excessive) conservatism, which only depends on user-defined design parameters

(see Theorem 2.3.2). Once again, this is a significant departure from the existing, standard model

reference adaptive control approaches, because their upper bounds for the adaptive control signals

depend on not only the design parameters specified by control engineers but also initial conditions

and unknown parameters (see Remarks 2.2.4 and 2.3.2 for additional details).
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iii) In addition to the major contributions stated in i) and ii), another contribution of this paper is the gen-

eralization of the proposed model reference adaptive control architecture to accommodate nonlinear

reference systems, which are desired for several practical applications especially for those involving

guidance and control of highly-maneuverable aircrafts, guided projectiles, and space launch vehicles

(see Theorem 2.4.1).

To summarize, the proposed architecture is a unique contribution to the model reference adaptive control

literature since it can be an effective control methodology for safety-critical applications to enforce the state

of a given uncertain dynamical system to strictly evolve in a pre-defined state-space set; for example, for

preserving safe flight envelope in aerospace applications (see Remark 2.4.2).

2.1.2 Organization and Notation

The organization of this paper is as follows. In Section 2.2, we present an overview on the (standard)

model reference adaptive control problem. In Section 2.3, we develop and analyze the proposed set-theoretic

adaptive control architecture for linear reference models, whereas Section 2.4 generalizes these results for

a class of nonlinear reference models. Numerical examples are provided in Section 2.5 to demonstrate the

efficacy of the proposed approach. Finally, we present conclusions and highlight some recommendations

for future research in Section 2.6.

The notation used in this paper is fairly standard. Specifically, N denotes the set of natural numbers,

R denotes the set of real numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set

of n×m real matrices, R+ (respectively, R+) denotes the set of positive (respectively, nonnegative-definite)

real numbers, Rn×n
+ (respectively, Rn×n

+ ) denotes the set of n×n positive-definite (respectively, nonnegative-

definite) real matrices, Dn×n denotes the set of n×n real matrices with diagonal scalar entries, 0n×n denotes

the n× n zero matrix, and “,” denotes equality by definition. In addition, we write (·)T for the transpose

operator, (·)−1 for the inverse operator, det(·) for the determinant operator, ‖ · ‖F for the Frobenius norm,

and ‖ · ‖2 for the Euclidean norm. Furthermore, we write ‖x‖A ,
√

xTAx for the weighted Euclidean norm

of x ∈ Rn with the matrix A ∈ Rn×n
+ , ‖A‖2 ,

√
λmax(ATA) for the induced 2-norm of the matrix A ∈ Rn×m,

λmin(A) (resp., λmax(A)) for the minimum (resp., maximum) eigenvalue of the matrix A ∈Rn×n, tr(·) for the

trace operator, and x (resp., x) for the lower bound (resp., upper bound) of a bounded signal x(t) ∈Rn, t ≥ 0,

that is, x≤ ‖x(t)‖2, t ≥ 0 (resp., ‖x(t)‖2 ≤ x, t ≥ 0).
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2.2 Model Reference Adaptive Control Overview

In this section, we present an overview on the (standard) model reference adaptive control problem.

Specifically, we begin with the definition of the projection operator.

Definition 2.2.1 Let ψ : Rn −→ R be a continuously differentiable convex function given by ψ(θ) ,

(εθ+1)θ Tθ−θ 2
max

εθ θ 2
max

, where θmax ∈ R is a projection norm bound imposed on θ ∈ Rn and εθ > 0 is a projection

tolerance bound. Then, the projection operator Proj : Rn×Rn→ Rn is defined by

Proj(θ ,y) ,





y, if ψ(θ)< 0,

y, if ψ(θ)≥ 0 and ψ ′(θ)y≤ 0,

y− ψ ′T(θ)ψ ′(θ)y
ψ ′(θ)ψ ′T(θ) ψ(θ), if ψ(θ)≥ 0 and ψ ′(θ)y > 0,

(2.1)

where y ∈ Rn.

It follows from Definition 2.2.1 that

(θ −θ
∗)T[Proj(θ ,y)− y

]
≤ 0, (2.2)

holds [80]. The definition of the projection operator can be generalized to matrices as

Projm(Θ,Y ) = (Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))), (2.3)

where Θ ∈ Rn×m,Y ∈ Rn×m, and coli(·) denotes i th column operator. In this case, for a given matrix Θ∗, it

follows from (2.2) that

tr
[
(Θ−Θ

∗)T[Projm(Θ,Y )−Y
]]

=
m

∑
i=1

[
coli(Θ−Θ

∗)T[Proj(coli(Θ),coli(Y ))− coli(Y )
]]
≤ 0. (2.4)

Throughout this paper, we assume without loss of generality that the projection norm bound imposed on

each column of Θ ∈ Rn×m is θmax.

Next, consider the uncertain dynamical system given by

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(t,xp(t)), xp(0) = xp0, t ≥ 0, (2.5)
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where xp(t) ∈Rnp , t ≥ 0, is the measurable state vector, u(t) ∈Rm, t ≥ 0, is the control input, Ap ∈Rnp×np is

a known system matrix, Bp ∈ Rnp×m is a known input matrix, δp : R+×Rnp → Rm is a system uncertainty,

Λ∈Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix, and the pair (Ap,Bp) is controllable. We now

introduce a standard assumption on system uncertainty parameterization (see, for example, [28–30]).

Assumption 2.2.1 The system uncertainty given by (2.5) is parameterized as

δp(t,xp) = W T
p (t)σp(xp), (2.6)

where Wp(t)∈Rs×m, t ≥ 0, is a bounded unknown weight matrix (i.e., ‖Wp(t)‖F ≤wp, t ≥ 0) with a bounded

time rate of change (i.e., ‖Ẇp(t)‖F ≤ ẇp, t ≥ 0) and σp : Rnp → Rs is a known basis function of the form

σp(xp) = [σp1(xp),σp2(xp), . . . ,σps(xp)]
T.

Remark 2.2.1 The system uncertainty parameterization in (2.6) captures time-varying changes in system

dynamics due to system reconfiguration, deployment of a payload, docking, or structural damage. By letting

the first element of the basis function be a constant (i.e., σp1(xp) = b), then this parameterization is also

sufficient to capture exogenous disturbances depending on time, which can represent adversaries due to

environment conditions such as winds or turbulent flows.

To address command following, let c(t) ∈ Rnc , t ≥ 0, be a given bounded piecewise continuous

command and xc(t) ∈ Rnc , t ≥ 0, be the integrator state satisfying

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0, t ≥ 0, (2.7)

where Ep ∈ Rnc×np allows to choose a subset of xp(t), t ≥ 0, to follow c(t), t ≥ 0. Now, (2.5) can be

augmented with (2.7) as

ẋ(t) = Ax(t)+BΛu(t)+BW T
p (t)σp(xp(t))+Brc(t), x(0) = x0, t ≥ 0, (2.8)

where x(t), [xT
p (t), xT

c (t)]
T ∈ Rn, t ≥ 0, n = np +nc, is the augmented state vector, x0 , [xT

p0,x
T
c0]

T,

A ,




Ap 0np×nc

Ep 0nc×nc


 ∈ Rn×n, (2.9)
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B ,

[
BT

p 0T
nc×m

]T

∈ Rn×m, (2.10)

Br ,

[
0T

np×nc
−Inc×nc

]T

∈ Rn×nc . (2.11)

We now consider the feedback control law given by

u(t) = un(t)+ua(t), t ≥ 0, (2.12)

where un(t) ∈ Rm, t ≥ 0, and ua(t) ∈ Rm, t ≥ 0, are the nominal and adaptive control laws, respectively.

Furthermore, let the nominal control law be

un(t) =−Kx(t), t ≥ 0, (2.13)

such that Ar , A−BK, K ∈ Rm×n, is Hurwitz. Using (2.12) and (2.13) in (2.8) yields

ẋ(t) = Arx(t)+Brc(t)+BΛ
[
ua(t)+W T(t)σ

(
x(t)
)]
, x(0) = x0, t ≥ 0, (2.14)

where W (t),
[
Λ−1W T

p (t), (Λ
−1− Im×m)K

]T ∈ R(s+n)×m, t ≥ 0, is an unknown (aggregated) weight matrix

and σ
(
x(t)
)
, [σT

p
(
xp(t)

)
,xT(t)]T ∈Rs+n, t ≥ 0, is a known (aggregated) basis function. Considering (2.14),

in addition, let the adaptive control law be

ua(t) =−Ŵ T(t)σ
(
x(t)
)
, t ≥ 0, (2.15)

where Ŵ (t) ∈ R(s+n)×m, t ≥ 0, is the estimate of W (t), t ≥ 0, satisfying the update law

˙̂W (t) = γProjm
(

Ŵ (t),σ
(
x(t)
)
eT(t)PB

)
, t ≥ 0, (2.16)

with Ŵmax being the projection norm bound. In (2.16), γ ∈ R+ is the learning rate (i.e., adaptation gain),

P ∈ Rn×n
+ is a solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (2.17)
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with R ∈ Rn×n
+ , and e(t), x(t)− xr(t), t ≥ 0, is the system error with xr(t) ∈ Rn, t ≥ 0, being the reference

state vector, which satisfies the reference model given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, t ≥ 0. (2.18)

Using (2.14), (2.15), and (2.18), the system error dynamics is given by

ė(t) = Are(t)−BΛW̃ T(t)σ
(
x(t)
)
, e(0) = e0, t ≥ 0, (2.19)

where W̃ (t) , Ŵ (t)−W (t) ∈ R(s+n)×m, t ≥ 0, is the weight estimation error and e0 , x0− xr0. Note that

‖W (t)‖F ≤ w, t ≥ 0, and ‖Ẇ (t)‖F ≤ ẇ, t ≥ 0, automatically holds as a direct consequence of Assumption

2.2.1.

Remark 2.2.2 The update law given by (2.16) for the (standard) model reference adaptive control problem

can be derived by considering the following Lyapunov function candidate

V (e,W̃ ) = eTPe+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
. (2.20)

Specifically, the time derivative of (2.20) along the closed-loop system trajectories is given by

V̇
(
e(t),W̃ (t)

)
= − eT(t)Re(t)−2γ

−1trW̃ T(t)Ẇ (t)Λ

+ 2trW̃ T(t)
(

Projm
(
Ŵ (t),σ

(
x(t)
)
eT(t)PB

)
−σ

(
x(t)
)
eT(t)PB

)
Λ

≤ −λmin(R)‖e(t)‖2
2 +2γ

−1w̃ ẇ‖Λ‖2, (2.21)

where w̃ = Ŵmax +w. Hence, V̇
(
e(t),W̃ (t)

)
< 0 outside of the compact set

Ω,
{(

e(t),W̃ (t)
)

: ‖e(t)‖2 ≤ η and ‖W̃ (t)‖ ≤ w̃
}
, (2.22)

where η ,
√

γ−1‖Λ‖2
2w̃ẇ+w̃2

λmin(R)
, which proves the boundedness of the solution

(
e(t),W̃ (t)

)
.

Remark 2.2.3 From a practical standpoint, it is important to calculate an upper bound on the norm of the

system error for understanding the effect of design parameters on the system performance. Specifically, to

find an ultimate bound of e(t) for t ≥ T , note from Remark 2.2.2 that λmin(P)‖e(t)‖2
2 ≤ V (e(t),W̃ (t)) ≤

17
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λmax(P)η2 + γ−1w̃2‖Λ‖2, and hence,

‖e(t)‖2 ≤
√

λmax(P)η2 + γ−1w̃2‖Λ‖2

λmin(P)
, t ≥ T. (2.23)

Since V̇
(
e(t),W̃ (t)

)
< 0 outside of the compact set (2.22) for t ∈ [0,T ), then

V
(
e(t),W̃ (t)

)
≤V

(
e(0),W̃ (0)

)
, (2.24)

and hence, it follows from (2.24) and λmin(P)‖e(t)‖2
2 ≤V

(
e(t),W̃ (t)

)
that

‖e(t)‖2 ≤
√

λmax(P)‖e(0)‖2 + γ−1‖W̃ (0)‖2
2‖Λ‖2

λmin(P)
, t ∈ [0,T ). (2.25)

Note that if the solution
(
e(t),W̃ (t)

)
is on the compact set (2.22) at t = 0, then (2.23) holds for t ≥ 0 since

T = 0 in this case.

Remark 2.2.4 On the upper bounds on the norm of the system error given by (2.23) and (2.25) in Remark

2.2.3, the following two observations are now immediate. First, we note that these upper bounds are

conservative, and hence, they do not provide strict performance guarantees. Second, these upper bounds

do not solely depend on user-defined design parameters due to the existence of the unknown matrices W

and Λ appearing in these bounds, and hence, they are not a-priori verifiable at the pre-design stage.

In addition, based on these upper bounds, one may be interested in calculating an upper bound on the

control signal. To elucidate this point, assume ‖σ(x)‖2 ≤ σ +L‖x‖2, L ∈ R+, where it follows from

‖u(t)‖2≤‖K‖2‖x(t)‖2+Ŵmax
(
L‖x(t)‖2+σ

)
≤
(
‖K‖2+LŴmax

)(
‖e(t)‖2+xr

)
+σŴmax, (2.23), and (2.25)

that

‖u(t)‖2 ≤
(
‖K‖2 +LŴmax

)(√
λmax(P)η2 + γ−1w̃2‖Λ‖2

λmin(P)
+ xr

)
+σŴmax, t ≥ T, (2.26)

‖u(t)‖2 ≤
(
‖K‖2 +LŴmax

)(√
λmax(P)‖e(0)‖2

2 + γ−1‖W̃ (0)‖2
2‖Λ‖2

λmin(P)
+ xr

)
+σŴmax, t ∈ [0,T ).

(2.27)

18
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Note that since (2.23) and (2.25) are conservative, then (2.26) and (2.27) are automatically conservative and

they do not solely depend on user-defined design parameters as well, and hence, they may not be practical

for controller design.

2.3 Set-Theoretic Model Reference Adaptive Control

In this section, we design and analyze a set-theoretic model reference adaptive control architecture

that allows the system error bound between the state of an uncertain dynamical system and the state of a

linear reference model to be less than a-priori, user-defined worst-case performance bound in the presence

of time-varying exogenous disturbances and system uncertainties, wherein Section 2.4 generalizes these

results for a class of nonlinear reference models. For this purpose, we introduce the following definition.

Definition 2.3.1 Let ‖z‖H =
√

zTHz be a weighted Euclidean norm, where z ∈ Rp is a real column vector

and H ∈Rp×p
+ . We define φ(‖z‖H), φ : R→R, to be a generalized restricted potential function (generalized

barrier Lyapunov function) on the set

Dε , {z : ‖z‖H ∈ [0,ε)}, (2.28)

with ε ∈ R+ being a-priori, user-defined constant, if the following statements hold:

i) If ‖z‖H = 0, then φ(‖z‖H) = 0.

ii) If z ∈ Dε and ‖z‖H 6= 0, then φ(‖z‖H)> 0.

iii) If ‖z‖H→ ε , then φ(‖z‖H)→ ∞.

iv) φ(‖z‖H) is continuously differentiable on Dε .

v) If z ∈ Dε , then φd(‖z‖H)> 0, where

φd(‖z‖H),
dφ(‖z‖H)

d‖z‖2
H

. (2.29)

vi) If z ∈ Dε , then

2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0. (2.30)
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Remark 2.3.1 Note that Definition 2.3.1 generalizes the definition of the restricted potential functions

(barrier Lyapunov functions) used by the authors of [21–26]. A candidate generalized restricted potential

function satisfying the conditions given in Definition 2.3.1 has the form

φ(‖z‖H) =
‖z‖2

H
ε−‖z‖H

, z ∈ Dε , (2.31)

which has the partial derivative

φd(‖z‖H) =
ε− 1

2‖z‖H(
ε−‖z‖H

)2 > 0, z ∈ Dε , (2.32)

with respect to ‖z‖2
H and

2φd(‖z‖H)‖z‖2
H−φ(‖z‖H) =

ε‖z‖2
H(

ε−‖z‖H
)2 > 0, z ∈ Dε . (2.33)

Next, consider the augmented uncertain dynamical system given by (2.8) with the feedback control

law in (2.12), where the nominal and adaptive control laws satisfy (2.13) and (2.15), respectively. Here, we

propose the (set-theoretic) update law constructed using generalized restricted potential functions given by

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (2.34)

where γ ∈ R+ is the learning rate, P ∈ Rn×n
+ is a solution of the Lyapunov equation given by (2.17) with

R ∈ Rn×n
+ , and e(t), x(t)− xr(t), t ≥ 0, is the system error with xr(t) ∈ Rn, t ≥ 0, being the reference state

vector, which satisfies the linear reference model given by (2.18). Note that φd(‖e(t)‖P) in (2.34) can be

viewed as an error dependent learning rate.

For the next theorem presenting the main result of this paper, one can write the system error

dynamics and the weight estimation error dynamics respectively given by

ė(t) = Are(t)−BΛW̃ T(t)σ
(
x(t)
)
, e(0) = e0, t ≥ 0, (2.35)

˙̃W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0, (2.36)

where W̃ (t), Ŵ (t)−W (t), t ≥ 0, is the weight estimation error.
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Theorem 2.3.1 Consider the uncertain dynamical system given by (2.5) subject to Assumption 2.2.1, the

linear reference model given by (2.18), and the feedback control law given by (2.12) along with (2.13),

(2.15), and (2.34). If ‖e0‖P < ε , then the closed-loop dynamical system given by (2.35) and (2.36) are

bounded, where the bound on the system error strictly satisfies a-priori given, user-defined worst-case

performance

‖e(t)‖P < ε, t ≥ 0. (2.37)

If, in addition, the unknown weight matrix in (2.6) is constant, then limt→∞ e(t) = 0.

Proof. To show boundedness of the closed-loop dynamical system given by (2.35) and (2.36),

consider the energy function V :Dε ×R(n+s)×m→ R+ given by

V (e,W̃ ) = φ(‖e‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
, (2.38)

where Dε , {e(t) : ‖e(t)‖P < ε}, and P ∈ Rn×n
+ is a solution of the Lyapunov equation in (2.17) with

R ∈ Rn×n
+ . Note that V (0,0) = 0, V

(
e,W̃

)
> 0 for all

(
e,W̃

)
6= (0,0), and

dφ(‖e(t)‖P)

dt
=

dφ(‖e(t)‖P)

d‖e(t)‖2
P

d‖e(t)‖2
P

dt
= 2φd(‖e(t)‖P)eT(t)Pė(t). (2.39)

Specifically, the time derivative of (2.38) along the closed-loop system trajectories (2.35) and (2.36) is given

by

V̇
(
e(t),W̃ (t)

)
=

dφ(‖e(t)‖P)

dt
+2γ

−1trW̃ T(t) ˙̃W (t)Λ

= 2φd(‖e(t)‖P)eT(t)Pė(t)

+2γ
−1trW̃ T(t)

(
γProjm

(
Ŵ (t),φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

)
−Ẇ (t)

)
Λ

= 2φd(‖e(t)‖P)eT(t)PAre(t)−2φd(‖e(t)‖P)eT(t)PBΛW̃ T(t)σ
(
x(t)
)

+2trW̃ T(t)Projm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
Λ−2γ

−1trW̃ T(t)Ẇ (t)Λ

= 2φd(‖e(t)‖P)eT(t)PAre(t)−2tr
(
Ŵ T(t)−W T(t)

)(
φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

−Projm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

))
Λ−2γ

−1trW̃ T(t)Ẇ (t)Λ. (2.40)
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Now, using the property of projection operator in (2.4), one can write

V̇
(
e(t),W̃ (t)

)
≤ −φd(‖e(t)‖P)eT(t)Re(t)+d

≤ −αφd(‖e(t)‖P)eT(t)Pe(t)+d +
1
2

αφ(‖e(t)‖P)−
1
2

αφ(‖e(t)‖P)

+
1
2

αγ
−1tr

[
(W̃ (t)Λ1/2)T(W̃ (t)Λ1/2)

]
− 1

2
αγ
−1tr

[
(W̃ (t)Λ1/2)T(W̃ (t)Λ1/2)

]

≤ −1
2

α

(
φ(‖e(t)‖P)+ γ

−1tr
[
(W̃ (t)Λ1/2)T(W̃ (t)Λ1/2)

])

−α

[
φd(‖e(t)‖P)eT(t)Pe(t)− 1

2
φ(‖e(t)‖P)

]
+

1
2

αγ
−1tr

[
(W̃ (t)Λ1/2)T(W̃ (t)Λ1/2)

]
+d

≤ −1
2

αV (e,W̃ )−α

[
φd(‖e(t)‖P)eT(t)Pe(t)− 1

2
φ(‖e(t)‖P)

]
+µ, (2.41)

and it follows from (2.30) in Definition 2.3.1 that

V̇
(
e(t),W̃ (t)

)
≤ −1

2
αV (e,W̃ )+µ, (2.42)

where α , λmin(R)
λmax(P)

, d , 2γ−1w̃ ẇ‖Λ‖2, and µ , 1
2 αγ−1w̃2‖Λ‖2 + d. The boundedness of the closed-loop

dynamical system given by (2.35) and (2.36) as well as the strict performance bound on the system error

given by (2.37) is now immediate by applying Lemma 1 of [25] and [23]. If, in addition, the unknown

weight matrix in (2.6) is constant, then it follows from a simplified version of the above analysis and using

the steps in the proof of Theorem 5.3 of [21] that limt→∞ e(t) = 0. �

For the next theorem, we assume without loss of generality that ‖σ(x)‖2 ≤ σ +L‖x‖2, L ∈ R+,

where it can be readily generalized to case ‖σ(x)‖2 ≤ σ +L‖x‖l
2 with l ∈ N and l ≥ 2.

Theorem 2.3.2 Consider the uncertain dynamical system given by (2.5) subject to Assumption 2.2.1, the

linear reference model given by (2.18), and the feedback control law given by (2.12) along with (2.13),

(2.15), and (2.34). If ‖e0‖P < ε and ‖σ(x)‖2 ≤ σ +L‖x‖2, then an upper bound for the control signal is

given by

‖u(t)‖2 <

(
‖K‖2 +LŴmax

)(
ε√

λmin(P)
+ xr

)
+σŴmax, t ≥ 0. (2.43)

Proof. It follows from (2.12) that

‖u(t)‖2 =
∥∥−Kx(t)−Ŵ T(t)σ

(
x(t)
)∥∥

2
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≤ ‖K‖2 ‖x(t)‖2 +Ŵmax
(
σ +L‖x(t)‖2

)

≤
(
‖K‖2 +LŴmax

)
(‖e(t)‖2 +‖xr(t)‖2)+σŴmax

<

(
‖K‖2 +LŴmax

)(
ε√

λmin(P)
+ xr

)
+σŴmax, (2.44)

which gives the result. �

Remark 2.3.2 As compared with the upper bounds on the norm of the system error given by (2.23) and

(2.25) for the (standard) model reference adaptive control problem, the worst-case performance bound

given by (2.37) not only is strict but also solely depends on a-priori given, user-defined design parameter

ε . That is, since (2.37) does not depend on the unknown matrices W and Λ unlike (2.23) and (2.25), this

performance bound is a-priori computable at the pre-design stage, which yields to a guaranteed system

performance. As a side note, (2.37) can be also written using the Euclidean norm of the system error as

‖e(t)‖2 <
ε√

λmin(P)
, t ≥ 0. (2.45)

Likewise, as compared with the upper bounds on the norm of the control signal given by (2.26) and (2.27) for

the (standard) model reference adaptive control problem, the bound on the control signal given by (2.43) is

less conservative for the proposed set-theoretic model reference adaptive control architecture and depends

only on the controller design parameters.

Remark 2.3.3 One can readily calculate the lower and upper bounds on the error dependent learning rate

φd(‖e(t)‖P), t ≥ 0, by utilizing a specific generalized restricted potential function that satisfies Definition 2.

To elucidate this point, consider the generalized restricted potential function in Remark 2.3.1. In particular,

it follows from (2.42) that V (e,W̃ ) is upper bounded by Vmax , max
{

V0,
2µ

α

}
, where V0 , V (e(0),W̃ (0)),

α = λmin(R)
λmax(P)

, and µ = 1
2 αγ−1w̃2‖Λ‖2 +2γ−1w̃ ẇ‖Λ‖2. Using (2.38) one can write φ(‖e(t)‖P)+ γ−1tr(W̃ (t)

Λ1/2)T(W̃ (t)Λ1/2)≤Vmax, t ≥ 0, and hence, φ(‖e(t)‖P)≤Vmax, t ≥ 0. Now, utilizing (2.31), it follows from

φ(‖e(t)‖P)≤Vmax, t ≥ 0, that

‖e‖P ∈ {‖e‖P ∈ R : 0≤ ‖e‖P ≤ ē} , ē,
−Vmax +

√
V 2

max +4Vmax ε

2
, (2.46)
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and it can be readily shown that ē < ε . Since (2.32) is a strictly increasing function, one can calculate the

lower and upper bound on the φd(‖e(t)‖P), t ≥ 0, as

1
ε
≤ φd(‖e(t)‖P) ≤ φd(ē). (2.47)

2.4 Generalizations to Nonlinear Reference Models

Reference models in adaptive control problems define how the closed-loop dynamical systems have

to ideally behave in the presence of exogenous disturbances and system uncertainties. In particular, if one

resorts to linear nominal control laws given by (2.13), then this nominal control law selection results in

linear reference models given by (2.18) to capture the ideal closed-loop dynamical system performance.

However, nonlinear nominal control laws are also desired for several practical applications especially for

those involving guidance and control of highly-maneuverable aircrafts, guided projectiles, and space launch

vehicles. Although [81–85] present notable contributions to allow adaptive control laws to augment nonlin-

ear nominal control laws, these results do not yield to strict guarantees on the system performance. In this

section, we generalize the results of Section 2.3 (and the results in [85]) such that the proposed set-theoretic

adaptive control architecture augments nonlinear nominal control laws, and hence, the system error bound

between the state of an uncertain dynamical system and the state of a class of nonlinear reference models is

guaranteed to be less than a-priori, user-defined worst-case performance bound.

Consider the augmented uncertain dynamical system given by (2.8) with the feedback control law

in (2.12). Let the nominal control law be

un(t) =−k
(
x(t),c(t)

)
, t ≥ 0, (2.48)

where k : Rn×Rm→ Rm. Now, (2.8) can be identically rewritten as -.15cm

ẋ(t) = Ax(t)−Bk
(
x(t),c(t)

)
+Brc(t)+BΛ

[
ua(t)+W T(t)σ

(
x(t)
)]
, x(0) = x0, t ≥ 0. (2.49)

In addition, consider the nonlinear reference model given by

ẋr(t) = Axr(t)−Bk
(
xr(t),c(t)

)
+Brc(t), t ≥ 0, (2.50)

such that xr(t), t ≥ 0, is bounded.
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Next, the system error dynamics is given by using (2.50) and (2.49) as

ė(t) = Ae(t)−B
[

k
(
x(t),c(t)

)
− k
(
xr(t),c(t)

)]
+BΛ

[
ua(t)+W T(t)σ

(
x(t)
)]
, e(0) = e0. (2.51)

Note that there exists a known signal v(x(t),xr(t),c(t)) ∈ Rm [85] such that

Are(t) = Ae(t)−B
[

k
(
x(t),c(t)

)
− k
(
xr(t),c(t)

)]
+Bv(·), t ≥ 0, (2.52)

holds, since Ar , A−BK (the matrix K is utilized here to make Ar Hurwitz, and hence, it should not be

confused with the linear nominal controller gain matrix used in Section 2.3). Thus, we let

v(·) =−Ke(t)+ k
(
x(t),c(t)

)
− k
(
xr(t),c(t)

)
, t ≥ 0, (2.53)

which acts like a feedback linearization term. Using (2.52), (2.51) can be rewritten as

ė(t) = Are(t)+BΛ

[
ua(t)+W T

0 (t)σ0
(
x(t),c(t)

)]
, e(0) = e0, t ≥ 0, (2.54)

where W0(t),
[
W T(t),−Λ−1

]T, t ≥ 0, and σ0(x(t),c(t)),
[
σT(x(t)),vT(·)

]T, t ≥ 0.

Now, let the adaptive control law be

ua(t) =−Ŵ T
0 (t)σ0

(
x(t),c(t)

)
, t ≥ 0, (2.55)

where Ŵ0(t) is an estimate of W0(t) satisfying the (set-theoretic) update law constructed using generalized

restricted potential functions given by

˙̂W0(t) = γProjm
(

Ŵ0(t),φd(‖e(t)‖P)σ0
(
x(t),c(t)

)
eT(t)PB

)
, Ŵ0(0) = Ŵ00. (2.56)

In (2.56), γ ∈ R+ is the learning rate and P ∈ Rn×n
+ is a solution of the Lyapunov equation given by (2.17)

with R ∈ Rn×n
+ . Note that, once again, φd(‖e(t)‖P) in (2.56) can be viewed as an error dependent learning

rate.

For the next theorem, one can write the system error dynamics and the weight estimation error

dynamics respectively given by
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ė(t) = Are(t)−BΛW̃ T
0 (t)σ0

(
x(t),c(t)

)
, e(0) = e0, t ≥ 0, (2.57)

˙̃W0(t) = γProjm
(

Ŵ0(t),φd(‖e(t)‖P)σ0
(
x(t),c(t)

)
eT(t)PB

)
−Ẇ0(t), W̃0(0) = W̃00, t ≥ 0, (2.58)

where W̃0(t), Ŵ0(t)−W0(t), t ≥ 0, is the weight estimation error.

Theorem 2.4.1 Consider the uncertain dynamical system given by (2.5) subject to Assumption 2.2.1, the

nonlinear reference model given by (2.50), and the feedback control law given by (2.12) along with (2.48),

(2.55), and (2.56). If ‖e0‖P < ε , then the closed-loop dynamical system given by (2.57) and (2.58) are

bounded, where the bound on the system error strictly satisfies a-priori given, user-defined worst-case

performance

‖e(t)‖P < ε, t ≥ 0. (2.59)

If, in addition, the unknown weight matrix in (2.6) is constant, then limt→∞ e(t) = 0.

Proof. The proof is similar to the proof of Theorem 2.3.1, and hence, is omitted. �

Remark 2.4.1 Similar to the discussion in Remark 2.3.2, one can conclude that the worst-case performance

bound given by (2.59) not only is strict but also solely depends on a-priori given, user-defined design

parameter ε . In addition, as it is done in Theorem 2.3.2, under certain set of assumptions on σ0
(
x(t),c(t)

)

and k
(
x(t),c(t)

)
, one can readily calculate an upper bound on the control signal that depends only on the

controller design parameters.

Remark 2.4.2 The proposed set-theoretic model reference adaptive control architecture can be an effective

control methodology for the state of an uncertain dynamical system to evolve in a safe state-space set (e.g.,

for preserving safe flight envelope in aerospace applications). To elucidate this point, let SF be a safe state-

space set such that the state of an uncertain dynamical system has to evolve inside this set, i.e., x(t) ∈ SF.

In addition, let SR ⊂ SF be a state-space set such that the state of a reference model evolves inside this set,

i.e., xr(t) ∈ SR. Then, the size of Dε can be adjusted by judiciously choosing the user-defined parameter

ε such that SR∪Dε ∈ SF holds and the state of an uncertain dynamical system does not violate the safe

state-space set SF. Illustration of the sets used in this remark is given in Figure 2.1. Finally, for instants

when the trajectory of the reference model is not predetermined and controlled by a user (e.g., pilot), then

the nonlinear reference models approach presented in this section can be used to constrain the reference
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t

D✏

Figure 2.1: Illustration of the sets in Remark 2.4.2.

state to stay inside a predetermined state-space set SR by limiting the authority of this user (see Section 2.5

for an illustrative numerical example regarding this point).

2.5 Illustrative Numerical Examples

In this section, we present several numerical examples to demonstrate the efficacy of the proposed

set-theoretic model reference adaptive control architecture.

2.5.1 Example 1

We begin with a scalar uncertain dynamical system given by

ẋp(t) = xp(t)+Λu(t)+Wp(t), x(0) = 0, t ≥ 0, (2.60)

with Λ = 0.75 and Wp(t) = 2sin(0.5t). For command tracking, we let Ep = 1 in (2.7) and choose a linear

nominal controller gain matrix K =
[
3.9, 3.2

]
in (2.13). For the proposed set-theoretic model reference

adaptive control architecture in Theorem 2.3.1, we use the generalized restricted potential function given in

Remark 2.3.1 with ε = 0.1 to strictly guarantee ‖x(t)− xr(t)‖P < 0.1, t ≥ 0 (an upper bound on the control

signal is calculated from Theorem 2.3.2 as ‖u(t)‖2 < 4.97 for this case). Finally, we set the projection norm

bound imposed on each element of the parameter estimate to 3 and use R = I to calculate P from (2.17) for

the resulting Ar matrix.

Figure 2.2 shows the closed-loop dynamical system performance with the nominal controller, where

it is evident from the system error phase portrait in Figure 2.3 that the nominal controller does not have

the capability to achieve given strict performance guarantees. Next, we apply the proposed set-theoretic

adaptive controller with γ = 1 in Figure 2.4, where Figures 2.5 and 2.6 clearly show that this controller

27



www.manaraa.com

0 5 10 15 20 25 30 35 40 45 50

−1

−0.5

0

0.5

1

x
r
1
(t
),

x
p
(t
)

 

 
xr1(t)
xp(t)

0 5 10 15 20 25 30 35 40 45 50

−4

−2

0

2

4

t (sec)

u
(t
)

Figure 2.2: Command following performance with the nominal controller in Example 1.
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Figure 2.3: System error phase portrait with the nominal controller in Example 1.

strictly guarantees ‖x(t)− xr(t)‖P < 0.1. Note from Figure 2.5 that the proposed controller adjusts φd(·),

and hence, its effective learning rate γφd(·), in response to system error in order to keep the system error

trajectories on Dε . Finally, Figure 2.7 shows the effect of the learning rate γ on the system error trajectory,

28



www.manaraa.com

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

x
r
1
(t
),

x
p
(t
)

 

 
xr1(t)
xp(t)

0 5 10 15 20 25 30 35 40 45 50

−3

−2

−1

0

1

2

3

t (sec)

u
(t
)

Figure 2.4: Command following performance with the proposed set-theoretic adaptive controller in Example
1.
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Figure 2.5: Norm of the system error trajectories with the proposed set-theoretic adaptive controller and the
evolution of the effective learning rate γφd(·) in Example 1.

where it can be seen regardless of the value of γ that the system error trajectory is bounded by the predefined

set Dε . 4
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Figure 2.6: System error phase portrait with the proposed set-theoretic adaptive controller in Example 1.
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Figure 2.7: System error phase portraits with the proposed set-theoretic adaptive controller in Example 1 for
different learning rates.
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2.5.2 Example 2

Consider the controlled longitudinal motion of a Boeing 747 airplane linearized at an altitude of 40

kft and a velocity of 774 ft/sec with the dynamics given by [86]

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(t,xp(t)), xp(0) = xp0, t ≥ 0, (2.61)

with

Ap =




−0.0030 0.0390 0 −0.3220

−0.0650 −0.3190 7.7400 0

0.0201 −0.1010 −0.4290 0

0 0 1.0000 0



, Bp =




0.0100

−0.1800

−1.1600

0



, (2.62)

where xp(t) =
[
x1(t), x2(t), x3(t), x4(t)

]T∈R4, is the state vector with x1(t) representing the component of

the velocity along the x-axis of the aircraft with respect to the reference axes (in ft/sec), x2(t) representing

the component of the velocity along the z-axis of the aircraft with respect to the reference axes (in ft/sec),

x3(t) representing the component of the velocity along the y-axis of the aircraft (pitch rate) with respect to

the reference axes (in crad/sec), x4(t) representing the pitch Euler angle of the aircraft body axes with respect

to the reference axes (in crad), and u(t) ∈ R representing the elevator input (in crad). In (2.61), δp(t,xp(t))

represents an uncertainty of the form δp(t,xp(t)) = sin(t) + 1.5x1(t) + x2(t) + 3x1(t)x2(t) and Λ = 1.75

represents an uncertain control effectiveness matrix. For command tracking, we let Ep =
[
1, 0, 0, 0

]
in (2.7)

and choose a linear nominal controller gain matrix K =
[
23.49, 1.35 −2.54, −15.27, 5.77

]
in (2.13). For

the proposed set-theoretic model reference adaptive control architecture in Theorem 2.3.1, we use the gener-

alized restricted potential function given in Remark 2.3.1 with ε = 1.5 to strictly guarantee ‖x(t)−xr(t)‖P <

1.5, t ≥ 0. In addition, we choose the basis function as σ(x(t)) =
[
1, x1(t), x2(t), x1(t)x2(t), xT(t)

]T.

Finally, we set the projection norm bound imposed on each element of the parameter estimate to 8 and use

R = I to calculate P from (2.17) for the resulting Ar matrix.

In this illustrative numerical example, we do not provide the closed-loop dynamical system perfor-

mance with the nominal controller, because it is unstable. Next, we apply the proposed set-theoretic adaptive

controller with γ = 0.01 in Figure 2.8, where Figure 2.9 clearly shows that this controller strictly guarantees

‖x(t)− xr(t)‖P < 1.5. 4
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Figure 2.8: Command following performance with the proposed set-theoretic adaptive controller in Example
2.
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Figure 2.9: Norm of the system error trajectories with the proposed set-theoretic adaptive controller and the
evolution of the effective learning rate γφd(·) in Example 2.
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2.5.3 Example 3

Consider the uncertain dynamical system representing a controlled wing rock dynamics model given

by [32]

ẋp(t) =




0 1

0 0


xp(t)+




0

1



(

Λu(t)+δp(t,xp(t))
)
, xp(0) = 0 t ≥ 0, (2.63)

where xp(t) =
[
xp1(t) xp2(t)

]T with xp1(t) representing the roll angle (in rad) and xp2(t) representing the

roll rate (in rad/sec). In (2.63), δp(t,xp(t)) represents an uncertainty of the form

δp(t,xp(t)) = α1 sin(t)+α2xp1 +α3xp2 +α4|xp1|xp2 +α5|xp2|xp2 +α6x3
p1, (2.64)

with α1 = 0.25, α2 = 0.5, α3 = 1.0, α4 =−1.0, α5 = 1.0, and α6 = 1.0, and Λ= 0.75 represents an uncertain

control effectiveness matrix. For command tracking, we let Ep =
[
1, 0

]
in (2.7). Based on the proposed

control architecture in Theorem 2.4.1, we select the nonlinear reference model as

ẋr(t) =




0 1 0

0 0 0

1 0 0




xr(t)− f




0

1

0




k(xr(t),c(t))+




0

0

−1




c(t), xr(0) = 0 t ≥ 0, (2.65)

where k(xr(t),c(t)) = K1[xr1(t), xr2(t)]T +K2Ψ(xr(t))xr3 with K1 = [4.98, 3.31], K2 = 2.23, c(t) = cd(t)

·Ψ(xr(t)), and Ψ(xr(t)) = tanh
(
5
∣∣|xr1(t)|−2

∣∣). Here, the purpose of the nonlinear function Ψ(·) is to

constrain the absolute value of the roll angle state to stay less than or equal to 2, and hence, to enforce

the roll angle state to stay inside a predetermined state-space set by limiting the authority of the pilot. For

the proposed set-theoretic model reference adaptive control architecture, we use the generalized restricted

potential function given in Remark 2.3.1 with ε = 1.5 to strictly guarantee ‖x(t)− xr(t)‖P < 1.5, t ≥ 0. In

addition, we choose the basis function as σ(x) =
[
1, xp1, xp2, |xp1|xp2, |xp2|xp2, x3

p1, xT
]T. Finally, we

set the projection norm bound imposed on each element of the parameter estimate to 22.5 and use R = I to

calculate P from (2.17) for the resulting Ar matrix.

In this illustrative numerical example, once again, we do not provide the closed-loop dynamical

system performance with the nominal controller, because it is unstable. Next, we apply the proposed set-
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Figure 2.10: Command following performance with the proposed set-theoretic adaptive controller in
Example 3.
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Figure 2.11: Norm of the system error trajectories with the proposed set-theoretic adaptive controller and
the evolution of the effective learning rate γφd(·) in Example 3.

theoretic adaptive controller with γ = 0.5 in Figure 2.10, where Figures 2.11 and 2.12 clearly show that this

controller strictly guarantees ‖x(t)−xr(t)‖P < 1.5. Note from Figure 2.10 that during t ∈ [20,30] a command
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Figure 2.12: System error phase portrait with the proposed set-theoretic adaptive controller in Example 3.

larger than the maximum allowed value of 2 is applied and the nonlinear function Ψ(·) is smoothly activated

to prevent the roll angle to exceed this maximum allowed value. 4

2.6 Conclusion

A challenge in the design of model reference adaptive controllers is to achieve a-priori, user-

defined performance guarantees. Motivated from this standpoint, we proposed and analyzed a new model

reference adaptive control architecture for uncertain dynamical systems to address disturbance rejection

and uncertainty suppression. The proposed framework was predicated on a set-theoretic adaptive controller

construction, which has the capability to enforce a-priori, user-defined worst-case performance bound on

the system error bound between the state of an uncertain dynamical system and the state of a (linear or

nonlinear) reference model. As a byproduct, we showed that an upper bound for the adaptive control signals

can be directly calculated without inducing (excessive) conservatism, which only depends on user-defined

design parameters and without dependence on initial conditions and unknown parameters in contrast to

standard model reference adaptive controllers. The novel characteristic of our framework was the capability

to enforce strict performance guarantees at the pre-design stage, instead of relying on excessive vehicle

testing and tools to validate the performance of adaptive controllers during the post-design stage. Several

35



www.manaraa.com

illustrative numerical examples demonstrated the efficacy of the proposed set-theoretic model reference

adaptive control architecture.

Future research will include generalizations using universal function approximation techniques such

as neural networks for instants when the basis function is not available for adaptive controller design. In

addition, we will also extend the proposed architecture for adaptive controller design in the presence of

loss of control as well as in the absence of measurable state vector by utilizing an output feedback adaptive

control mechanism. Finally, experimental validation through flight tests and robotic system demonstrations

will be considered as a future research.
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CHAPTER 3: A NEUROADAPTIVE ARCHITECTURE FOR MODEL REFERENCE CONTROL

OF UNCERTAIN DYNAMICAL SYSTEMS WITH PERFORMANCE GUARANTEES1

Neuroadaptive control systems have the capability to approximate unstructured system uncertainties

on a given compact set using neural networks. Yet, a challenge in their design is to guarantee the closed-loop

system trajectories stay in this set such that the universal function approximation property is satisfied and the

overall system stability is achieved. To address this challenge, we present and analyze a new neuroadaptive

architecture in this paper for model reference control of uncertain dynamical systems with strict performance

guarantees. Specifically, the proposed architecture is predicated on a novel set-theoretic framework and

has the capability to keep the closed-loop system trajectories within an a-priori, user-defined compact set

without violating the universal function approximation property. A transport aircraft example is also given

to complement the presented theoretical results.

3.1 Introduction

3.1.1 Literature Review

Both adaptive and neuroadaptive control systems have the capability to effectively handle the effects

of adverse system conditions resulting from exogenous disturbances, imperfect system modeling, degraded

modes of operation, and changes in system dynamics. Specifically, parameterized system uncertainty

models with a known structure but unknown parameters are utilized in adaptive control systems (e.g., see

[9, 28–32, 40, 59, 87, 88] and references therein). For applications involving system uncertainties with

unknown structures and unknown parameters, neuroadaptive control systems are preferred since they are

based on the universal function approximation property and can handle a larger class of system uncertainties

that may not be tolerated by adaptive control systems (e.g., see [8, 33–36, 78, 89–92] and references therein).

In particular, using neural networks on a compact set of the real coordinate space, neuroadaptive control

systems have the capability to closely approximate system uncertainties with an unknown structure and

unknown parameters (i.e., unstructured system uncertainties).

1This chapter has been submitted to the Systems & Control Letters for possible publication.
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Yet, a challenge in the design of neuroadaptive control systems is to guarantee the closed-loop

system trajectories stay in this compact set such that the universal function approximation property is

satisfied and the overall system stability is achieved. This is due to the fact that approximation of a given

system uncertainty may not be valid for time instants when the closed-loop system trajectories are outside of

the considered compact set of the real coordinate space, where this can lead to instability of the closed-loop

system trajectories. Current practice relies heavily on excessive simulations and vehicle testing to address

this challenge as a means of developing guarantees on the closed-loop system performance. However,

drawback of these approaches is that they only provide limited verification with respect to what is tested;

fixed and finite set of initial conditions, user commands, and adverse system conditions [5–7].

Notable theoretical exceptions that do not rely on ad-hoc testing include [18–20, 25, 26, 30]. In

particular, the authors of [18] use an error transformation approach to achieve constrained performance

guarantees, where it is assumed that the control signals can access every element of the state vector.

This limitation is avoided in [19] by considering a backstepping approach under the assumption that a

desired trajectory and its derivatives are available and all bounded. In addition, the same approach is

extended to a generalized class of uncertain dynamical systems in [20] in order to enforce constraints on

output signals but not on state vectors. Restricted potential functions (barrier Lyapunov functions) are

employed in the neuroadaptive control schemes of [25] and [26] in the context of a backstepping approach

to construct a closed-loop dynamical system with strict performance guarantees. It should be also noted that

the authors of [30] consider a model reference neuroadaptive control methodology under the assumption

that the approximation tolerance resulting from the neural network approximation of the system uncertainty

is known inside a compact set and upper bounded by a known function outside this set.

3.1.2 Contribution

In this paper, we focus on disturbance rejection and unstructured system uncertainty suppression for

dynamical systems. Our contribution is to present and analyze a new neuroadaptive architecture for model

reference control with strict performance guarantees, where it can be viewed as a significant and nontrivial

generalization of the results presented in the previous work of authors in [1] that utilize parameterized system

uncertainty models with a known structure but unknown parameters. Specifically, the proposed approach is

predicated on a novel set-theoretic approach based on restricted potential functions, where the approximation

tolerance resulting from the neural network approximation of the system uncertainty is generally treated as
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unknown. It is shown that the proposed neuroadaptive framework has the capability to keep the closed-loop

system trajectories within an a-priori, user-defined compact set of the real coordinate space without violating

the universal function approximation property. This is achieved by proper selection of the user-defined

performance bound within the proposed set-theoretic model reference neuroadaptive control architecture, in

connection with the set in which the trajectories of the reference system evolves (see Remark 3.3.1).

Contents of the paper are as follows. In Section 3.2, we overview mathematical preliminaries.

In Sections 3.3 and 3.4, we respectively present the problem formulation and the proposed set-theoretic

model reference neuroadaptive control architecture, where its stability analysis and performance guarantees

are established in Section 3.5. The efficacy of our theoretical results is demonstrated on a transport aircraft

example in Section 3.6 and conclusions are drawn in Section 3.7. Note that a preliminary conference version

of this paper appeared in [93], where the present paper considerably expands on [93] by providing new key

theoretical results and detailed proofs of all the results with a new example.

3.2 Mathematical Preliminaries

The notation used throughout this paper is standard. In particular, R denotes the set of real numbers,

Rn denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ (respectively,

R+) denotes the set of positive (respectively, nonnegative-definite) real numbers, Rn×n
+ (respectively, Rn×n

+ )

denotes the set of n× n positive-definite (respectively, nonnegative-definite) real matrices, Dn×n denotes

the set of n× n real matrices with diagonal scalar entries, 0n×n denotes the n× n zero matrix, and “,”

denotes equality by definition. We also write ‖ · ‖F for the Frobenius norm, ‖ · ‖2 for the Euclidean norm,

‖A‖2 ,
√

λmax(ATA) for the induced 2-norm of the matrix A ∈ Rn×m, and λmin(A) (respectively, λmax(A))

for the minimum (respectively, maximum) eigenvalue of the Hermitian matrix A.

The following definitions are needed for the main results of this paper.

Definition 3.2.1 Let Ω=
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}

be a convex hypercube in Rn, where (θ min
i ,

θ max
i ) represent minimum and maximum bounds for the ith component of n-dimensional parameter vector

θ . For a sufficiently small positive constant ν , define second hypercube as Ων =
{

θ ∈ Rn : (θ min
i + ν

≤ θi ≤ θ max
i −ν)i=1,2,··· ,n

}
, where Ων ⊂ Ω. With y ∈ Rn, projection operator Proj : Rn×Rn→ Rn is then

defined componentwise by Proj(θ ,y) ,
(

θ max
i −θi

ν

)
yi if θi > θ max

i − ν and yi > 0, Proj(θ ,y) ,
(

θi−θ min
i

ν

)
yi if

θi < θ min
i +ν and yi < 0, and Proj(θ ,y), yi otherwise.
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Based on the above formulation, note that
(
θ −θ ∗

)T(Proj(θ ,y)− y
)
≤ 0,θ ∗ ∈Ων [30, 80], where

this inequality can be also readily generalized to matrices using Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )), . . . ,

Proj(colm(Θ) ,colm(Y ))
)

with Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denoting ith column operator.

Definition 3.2.2 Let ‖z‖H =
√

zTHz be a weighted Euclidean norm, where z ∈ Rp is a real column vector

and H ∈Rp×p
+ . We define φ(‖z‖H), φ : R→R, to be a generalized restricted potential function (generalized

barrier Lyapunov function) on the set Dε , {z : ‖z‖H ∈ [0,ε)}, with ε ∈ R+ being a-priori, user-defined

constant, if the following statements hold [1]: i) If ‖z‖H = 0, then φ(‖z‖H) = 0. ii) If z ∈ Dε and ‖z‖H 6= 0,

then φ(‖z‖H)> 0. iii) If ‖z‖H→ ε , then φ(‖z‖H)→ ∞. iv) φ(‖z‖H) is continuously differentiable on Dε . v)

If z ∈Dε , then φd(‖z‖H)> 0, where φd(‖z‖H),
dφ(‖z‖H)

d‖z‖2
H

. vi) If z ∈Dε , then 2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0.

Remark 3.2.1 A generalized restricted potential function satisfying above conditions has the form φ(‖z‖H)

= ‖z‖2
H/
(
ε−‖z‖H

)
, z∈Dε , which has partial derivative φd(‖z‖H) =

(
ε− 1

2‖z‖H
)
/
(
ε−‖z‖H

)2
> 0, z∈Dε ,

with respect to ‖z‖2
H, and 2φd(‖z‖H)‖z‖2

H−φ(‖z‖H) = ε‖z‖2
H/
(
ε−‖z‖H

)2
> 0, z ∈ Dε [1].

Definition 3.2.3 We define tanh(x),
[

tanh(x(1)), tanh(x(2)), . . . , tanh(x(s))
]T ∈Rs for any vector x ∈Rs.

Remark 3.2.2 For any scalar η ∈ R, |η | − η tanh(η) ≤ L holds with L = 0.2785 [94]. This can be

generalized for any vector η ∈ Rs as ‖η‖2−ηT tanh(η)≤ L.

3.3 Problem Formulation

This section introduces the problem formulation focused in this paper. Specifically, consider the

uncertain dynamical system given by

ẋ(t) = Ax(t)+BΛ
(
u(t)+δ (t,x(t))

)
, x(0) = x0, t ≥ 0, (3.1)

where x(t) ∈ Rn, t ≥ 0, is the measurable state vector, u(t) ∈ Rm, t ≥ 0, is the control input, A ∈ Rn×n is

a known system matrix, B ∈ Rn×m is a known input matrix, δ : R+×Rn → Rm is a system uncertainty,

Λ ∈ Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix, and the pair (A,B) is controllable. Note

that a wide range of physical dynamical systems either explicitly or approximately satisfy the system model

considered in (3.1). Specifically, these systems include but not limited to mass-spring-damper systems [95],

pendulum systems linearized around an equilibrium point of interest subject to friction uncertainties [96],

ground mobile robots [97], and flight control systems [30, 98].
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Figure 3.1: An illustration of the sets in Remark 3.3.1.

Assumption 3.3.1 On a compact set D of the real coordinate space, the system uncertainty in (3.1) is

parameterized as1

δ (t,x(t)) = W T
N (t)σN(x(t))+ εN(x(t)), x(t) ∈ D, (3.2)

where WN(t) ∈ Rs×m, t ≥ 0, is a bounded unknown weight matrix (i.e., ‖WN(t)‖F ≤ wN, t ≥ 0) with a

bounded time rate of change (i.e., ‖ẆN(t)‖F ≤ ẇN, t ≥ 0), σN : Rn → Rs is a basis function constructed

using neural networks of the form σN(x(t)) = [σN1(x(t)),σN2(x(t)), . . . ,σNs(x(t))]T, and εN : Rn→ Rm is

the approximation tolerance upper bounded by an unknown constant ε∗ such that2

‖εN(x(t))‖2 ≤ ε
∗, ∀x(t) ∈ D. (3.3)

Remark 3.3.1 The overall control objective considered in this paper is to have the state trajectory of

the uncertain dynamical system given in (3.1) to evolve in a compact set such that the neural network

approximation given in (3.2) is always valid. To elucidate this point and for illustration purposes, consider

the case with scalar trajectories as shown in Figure 3.1. In addition, let D be a compact set of the real

coordinate space in which the neural network approximation is valid, and letDr ⊂D be the set such that the

state of a reference model evolves inside this set, i.e., xr(t) ∈ Dr. In what follows, we show that the distance

between the trajectories of the uncertain dynamical system and the trajectories of the reference system can

be adjusted by the size of a user-defined compact set Dε by choosing a user-defined parameter ε such that

Dr∪Dε ⊂D holds and the system uncertainty parameterization in (3.2) remains always valid.

1As discussed in Section 3.1, the parameterization given by (3.2) is preferred for applications involving system uncertainties
with unknown structures and unknown parameters. We refer to, for example, Section 12.4 in [30] for further reading.

2Note that the magnitude of parameter ε∗ can be arbitrarily reduced within the compact set D by providing a sufficient large
number of neurons to the considered neural network [99].
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Now, consider the feedback control law given by

u(t) = un(t)+ua(t), t ≥ 0, (3.4)

where un(t) ∈ Rm, t ≥ 0, and ua(t) ∈ Rm, t ≥ 0, are the nominal and adaptive control laws, respectively.

Furthermore, let the nominal control law be

un(t) =−K1x(t)+K2c(t), t ≥ 0, (3.5)

where c(t) ∈ Rnc is a bounded reference command such that Ar , A−BK1, K1 ∈ Rm×n, is Hurwitz and

Br , BK2, K2 ∈ Rm×nc .

Next, consider the reference model capturing a desired closed-loop behavior

ẋr(t) = Arxr(t)+Brc(t), xr(t) ∈ Dr, xr(0) = xr0, t ≥ 0, (3.6)

where xr(t) ∈ Rn is the reference model state vector, Ar ∈ Rn×n is the desired Hurwitz system matrix,

Br ∈Rn×nc is the command input matrix, and Dr is a user-defined set (see Remark 3.3.1). Using (3.1), (3.4),

(3.5) and (3.6), the system error dynamics is given by

ė(t) = Are(t)+BΛ
((

Λ
−1− Im×m

)(
K1x(t)−K2c(t)

)
+ua(t)+δ (t,x(t))

)
, e(0) = e0, t ≥ 0, (3.7)

where e(t), x(t)− xr(t), t ≥ 0, is the system error. Using (3.2) in (3.7) yields

ė(t) = Are(t)+BΛ
(
W T(t)σ(x(t))+ua(t)+ εN(x(t))

)
, e(0) = e0, t ≥ 0, (3.8)

where W (t) , [W T
N (t), (Λ

−1 −Im×m)K1, −(Λ−1− Im×m)K2]
T ∈ R(s+n+nc)×m, t ≥ 0, is an unknown weight

matrix and σ
(
x(t),c(t)

)
,
[
σT

N
(
x(t)
)
, xT(t), cT(t)

]T ∈Rs+n+nc , t ≥ 0, is a known function involving neural

network-based basis functions, the system state vector, and the reference command.

The statement of the model reference neuroadaptive control objective of this paper is now given as

follows. Consider the uncertain dynamical system given by (3.1) subject to Assumption 3.3.1. Our aim is to

design the adaptive control signal ua(t), t ≥ 0, to achieve stability of the overall closed-loop system and keep

the system error trajectories inside an a-priori, user-defined compact set such that the parameterization in
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Assumption 3.3.1 remains valid for all time. To address this objective, the next section introduces the

proposed set-theoretic neuroadaptive model reference adaptive control architecture.

3.4 Set-Theoretic Model Reference Neuroadaptive Control

We now present a set-theoretic model reference neuroadaptive control approach based on restricted

potential functions with strict performance guarantees such that the closed-loop system trajectories stay

inside the setD, and hence, the universal function approximation remains valid for all time. For this purpose,

let the adaptive control law be

ua(t) =−Ŵ T(t)σ
(
x(t)
)
− v(t), t ≥ 0, (3.9)

where v(t)∈Rm is a corrective signal and Ŵ (t)∈R(s+n+nc)×m, t ≥ 0, is the estimate of W (t), t ≥ 0, satisfying

the update law

˙̂W (t) = γ1Projm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (3.10)

with Ŵmax and −Ŵmax respectively being the maximum and minimum element-wise projection bounds,

φd(‖e(t)‖P) ∈R+ is an error dependent learning gain, γ1 ∈R+ is a design scalar, and P ∈Rn×n
+ is a solution

of the Lyapunov equation

0 = AT
r P+PAr +R, (3.11)

where R ∈ Rn×n
+ .

Next, we design the corrective signal v(t) in (3.9) as

v(t) = tanh
(
φd(‖e(t)‖P)BTPe(t)

)
q̂(t), t ≥ 0, (3.12)

where q̂(t) ∈ R+, t ≥ 0, is the estimate of q, λmax(Λ)
λmin(Λ)

ε∗ satisfying the corrective update law

˙̂q(t) = γ2Proj
(

q̂(t),φd(‖e(t)‖P)eT(t)PB tanh
(
φd(‖e(t)‖P)BTPe(t)

)
−ξ q̂(t)

)
, q̂(0) = q̂0 ∈ R+,

t ≥ 0, (3.13)
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with q̂max and 0 being the maximum and minimum projection bounds respectively, γ2 ∈R+ is a design scalar,

and ξ ∈ R+ is the σ -modification gain.

Using (3.9) in (3.8), the system error dynamics now become

ė(t) = Are(t)−BΛ
(
W̃ T(t)σ

(
x(t)
)
− εN(x(t))+ v(t)

)
, e(0) = e0, t ≥ 0, (3.14)

where W̃ (t) , Ŵ (t)−W (t) ∈ R(s+n+nc)×m, t ≥ 0, is the weight estimation error and e0 , x0− xr0. Note

that ‖W (t)‖F ≤ w, t ≥ 0, and ‖Ẇ (t)‖F ≤ ẇ, t ≥ 0, automatically hold as a direct consequence of Assumption

3.3.1. In addition, one can also write the weight estimation error dynamics and the residual bound estimation

error dynamics respectively as

˙̃W (t) = γ1Projm
(
Ŵ (t),φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, (3.15)

˙̃q(t) = γ2Proj
(
q̂(t),φd(‖e(t)‖P)eT(t)PB tanh

(
φd(‖e(t)‖P)BTPe(t)

)
−ξ q̂(t)

)
, q̃(0) = q̃0, (3.16)

where q̃(t), q̂(t)−q is the residual bound estimation error.

3.5 Analysis of the Proposed Neuroadaptive Control Architecture

The main purpose of this section is to present the stability analysis and establish strict performance

guarantees of the proposed model reference neuroadaptive control architecture in Section 4 (see Section

5.1), where we also present a special case of the proposed algorithm (see Section 5.2).

3.5.1 Stability Analysis and Performance Guarantees

We start with the following first result of this paper.

Theorem 3.5.1 Consider the uncertain dynamical system given by (3.1) subject to Assumption 3.3.1, the

reference model given by (3.6), and the feedback control law given by (3.4) along with the update laws

(3.5), (3.9), (3.10), (3.12), and (3.13). If ‖e0‖P < ε , then the closed-loop dynamical system given by (3.14),

(3.15) and (3.16) are bounded, where the bound on the system error strictly satisfies a-priori given, user-

defined worst-case performance

‖e(t)‖P < ε, t ≥ 0. (3.17)
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Proof. See Appendix A for the proof of Theorem 3.5.1.

Similar to Remark 7 of [1], the next corollary is now immediate with the proposed set-theoretic

model reference neuroadaptive control architecture. In particular, it shows that if one utilizes the error

dependent learning rate defined in Remark 3.2.1, φd(‖e(t)‖P) =
(
ε− 1

2‖e(t)‖P
)
/
(
ε−‖e(t)‖P

)2, then it does

not exceed a finite bound when it is used in the update laws (3.10) and (3.13). Note that the same conclusion

can be made for other selections of error dependent learning rates by following the steps outlined in the

proof of the following corollary, and hence, there is not much loss of generality.

Corollary 3.5.1 Consider the uncertain dynamical system given by (3.1) subject to Assumption 3.3.1, the

reference model given by (3.6), and the feedback control law given by (3.4) along with the update laws

(3.5), (3.9), (3.10), (3.12), and (3.13). If ‖e0‖P < ε and φ(‖e(t)‖P) = ‖e(t)‖2
P/
(
ε −‖e(t)‖P

)
, then the

error dependent learning rate φd(‖e(t)‖P) =
(
ε − 1

2‖e(t)‖P
)
/
(
ε−‖e(t)‖P

)2 is lower and upper bounded

by 1
ε
≤ φd(‖e(t)‖P) ≤ φd(ē), t ≥ 0, where ē, (−Vmax +

√
V 2

max +4Vmax ε)/2, Vmax ,max
{

V0,
2µ

α

}
, and

V0 ,V (e(0),W̃ (0), q̃(0)).

Proof. See Appendix B for the proof of Corollary 3.5.1.

3.5.2 A Special Case

For completeness, we now present a special case. Specifically, the next corollary shows a simplified

version of the proposed set-theoretic model reference neuroadaptive control architecture for cases when the

approximation tolerance in (3.3) has a known upper bound, as considered in (12.12) of [30].

Corollary 3.5.2 Consider the uncertain dynamical system given by (3.1) subject to Assumption 3.3.1, the

reference model given by (3.6), and the feedback control law given by (3.4) along with the update laws (3.5),

(3.9), and (3.10). If ‖e0‖P < ε and there exist known constants c1 ∈ R+, c2 ∈ R+, and c3 ∈ R+ such that

‖εN(x(t))‖2 ≤ ε∗≤ c1, ∀x(t) ∈ D, (3.18)

c2I ≤ λmin(Λ)I ≤ Λ ≤ λmax(Λ)I ≤ c3I, (3.19)

hold, then the corrective signal v(t) given by

v(t) = tanh
(
φd(‖e(t)‖P)BTPe(t)

)
c1c−1

2 c3, t ≥ 0, (3.20)
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results in a bounded closed-loop dynamical system given by (3.14) and (3.15), where the bound on the

system error strictly satisfies a-priori given, user-defined worst-case performance

‖e(t)‖P < ε, t ≥ 0. (3.21)

Proof. See Appendix C for the proof of Corollary 3.5.2.

Remark 3.5.1 Note that Theorem 3.5.1 and Corollaries 3.5.1 and 3.5.2 significantly generalize the results

presented in the previous work of authors in Theorem 3.1 of [1] by considering an unstructured uncertainty

for the dynamical system and using the universal function approximation property of neural networks.

Specifically, Theorem 3.5.1 shows that the proposed neuroadaptive control framework has the capability to

keep the closed-loop system trajectories within an a-priori, user-defined compact set of the real coordinate

space such that the universal function approximation property is not violated.

3.6 Illustrative Numerical Example

In this section, we present a numerical example to demonstrate the efficacy of the proposed set-

theoretic model reference neuroadaptive control architecture. Specifically, an aircraft landing problem

adopting from Section 12.4 of [30] is considered such that the aircraft experiences increase in its aero-

dynamic lift force when it approaches to the runway (i.e., the ground effect). To this end, a generic mid-

size transport aircraft flying wings-level at an altitude of h0 = 300 ft above ground is considered, with its

landing gear down and with flaps/slats extended ([30, 100]). The vehicle true airspeed is V0 = 250 ft/s. The

corresponding longitudinal linear dynamics are of the form ẋ(t) =Ax(t)+BΛ
(
u(t)+θgαg(h(t))

)
, x(0) = x0,

t ≥ 0, with A, B and θg matrices as given in Example 12.3 of [30], and where x(t) =
[
V (t), α(t), q(t), θ(t),

h(t)
]T∈ R5 is the state vector with V (t) representing the true airspeed (in ft/s), α(t) representing the angle

of attack (in rad), q(t) representing the pitch rate (in deg/s), θ(t) representing the pitch angle (in deg), h(t)

representing the altitude above the runway (in ft), and u(t) = [δth(t), δe(t)]T ∈ R2 with δth(t) representing

the engine thrust (in %), and δe(t) the elevator input (in deg). Here, αg(h(t)) represents the ground effect of

the aircraft that is considered as an uncertainty of the form αg(h(t)) = −0.0698(1− tanh(0.1(h(t)− 60)))

and Λ = I (i.e., control effectiveness matrix is not uncertain in this example).
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Figure 3.2: Distribution of the RBFs in (3.22) in transport aircraft example.

Linear quadratic regulator theory is used to design the nominal controller gain matrices as K1 =


0.147 −89.216 53.147 139.971 0.173

0.009 −28.197 3.832 42.774 0.142


 and K2 =



−0.721 0.173

0.879 0.142


. Furthermore, we choose the command

signal c = [Vc, hc]
T with Vc = 250 ft/s and hc being the desired altitude profile shown in Figures 3.3 and 3.4.

In order to approximate the uncertain term due to the ground effect (θgαg(h(t))), we utilize a neural network

with the altitude-dependent regressor vector as

σ(h) = [σ1(h), σ2(h), σ3(h), σ4(h), 1]T, t ≥ 0, (3.22)

with σi(h) = exp(−0.0056(h− hi)
2), i = 1, . . . ,4, for uniform distribution of RBFs on the altitude interval

(0, 60) ft to provide a homogeneous coverage of the altitude range in which the ground effect is active

as depicted in Figure 3.2. For the proposed set-theoretic model reference adaptive control architecture in

Theorem 3.5.1, we use the generalized restricted potential function given in Remark 3.2.1 with ε = 2 to

strictly guarantee ‖x(t)− xr(t)‖P < 2, t ≥ 0. Finally, we set the projection norm bound imposed on the

parameter estimate to Ŵmax = 10 and q̂max = 15 and use R = I to calculate P from (3.11) for the resulting Ar

matrix.

Figure 3.3 shows the closed-loop dynamical system performance with the nominal controller. One

can see from this figure that the airspeed deviated from the command signal and the aircraft cannot reach the

ground due to the ground effect. Next, we apply the proposed set-theoretic adaptive controller with γ1 = γ2 =

5 and ξ = 0.2. It can be seen in Figure 3.4 that desired performance is obtained and the control surfaces

do not exceed practical limitations, and Figure 3.5 clearly shows that this controller strictly guarantees

‖x(t)− xr(t)‖P < 2. Note that since the error trajectory is contained within Dε , and both ε and radial basis

functions in (3.22) are selected such that the system trajectory remains within the compact set D, the neural

network approximation is always valid on the compact set D with the bounded approximation error in (3.3).
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Figure 3.3: System performance with the nominal controller in transport aircraft example.
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Figure 3.4: System performance with the proposed set-theoretic adaptive controller in transport aircraft
example.

3.7 Conclusion

To contribute to the previous studies in neuroadaptive model reference adaptive control systems, we

have reported a new architecture entitled set-theoretic model reference neuroadaptive control, which has the
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Figure 3.5: Norm of the system error trajectories with the proposed set-theoretic adaptive controller and the
evolution of the effective learning rate γ1φd(·) in transport aircraft example.

capability to enforce strict performance guarantees on the distance between the trajectories of an uncertain

dynamical system and the trajectories of a desired reference model. Specifically, our motivation behind

this development stems from a major challenge in the design of neuroadaptive control laws for making

the closed-loop system trajectories to evolve in a compact set where the universal function approximation

properties hold. In particular, as shown in Theorem 3.5.1, by using the proposed control architecture, a

control designer can adjust the deviation of the system trajectories from a given reference system; hence, as

discussed in Remark 3.3.1, the system uncertainty parameterization remains valid with proper reference

model selection for all time. An illustrative numerical example was also provided to complement the

theoretical contribution of this paper. Future research will include extensions to the case when the entire

state vector of the uncertain dynamical system is not measurable as well as experimental studies involving

real-world unmanned vehicles.
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CHAPTER 4: GENERALIZATIONS OF THE SET-THEORETIC MODEL REFERENCE

ADAPTIVE CONTROL

This chapter presents several key generalizations of the set-theoretic model reference adaptive

control architecture proposed in Chapter 2. In particular, Section 4.1 extends this control architecture

for enforcing time-varying user-defined performance bounds, Section 4.2 presents a new architecture to

achieve adjustable performance guarantees on a subset of system error trajectories, Section 4.3 provides

performance guarantees for uncertain dynamical systems subject to actuator dynamics, and Section 4.4

generalizes the set-theoretic model reference adaptive control architecture to address disturbance rejection

and system uncertainty suppression in the presence of actuator failures.

4.1 Set-Theoretic Model Reference Adaptive Control with Time-Varying Performance Bounds1

One of the fundamental problems in model reference adaptive control design is the ability of the

controlled system to achieve not only stability but also a user-defined performance in the presence of

exogenous disturbances and system uncertainties. Motivated from this standpoint, we recently proposed

a set-theoretic model reference adaptive control framework, which guarantees the norm of the system error

(i.e., the difference between the state of an uncertain dynamical system and the state of a given reference

model) to be less than a user-defined constant performance bound. The contribution of this paper is to

generalize the set-theoretic model reference adaptive control framework in order to enforce user-defined

time-varying performance bounds on the system error, which gives the control designer a flexibility to

control the closed-loop system performance as desired on different time intervals (e.g., transient time interval

and steady-state time interval). To this end, two adaptive command following control architectures are

proposed and their stability and performance properties are rigorously established using system-theoretic

methods. Finally, our theoretical findings are further supported through a numerical example in order to

compare these architectures and illustrate their efficacy.

1This section is previously published in [2]. Permission is included in Appendix H.
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4.1.1 Introduction

Model reference adaptive controllers have three major components; a reference model, an update

law, and a controller. The reference model captures a desired closed-loop system performance for which

its output (respectively, state) is compared with the output (respectively, state) of an uncertain dynamical

system. This comparison results in a system error used to drive the update law online. The controller then

adapts feedback gains to suppress the system error using the information received from the update law.

Although model reference adaptive controllers have the ability to guarantee closed-loop system stability

in the presence of exogenous disturbances and system uncertainties, one fundamental problem is to obtain

user-defined performance guarantees while utilizing these controllers in the feedback loop.

We have recently started to address this challenge by introducing a set-theoretic model reference

adaptive control framework [1, 21]. Specifically, [21] and [1] respectively present this new framework for

dynamical systems subject to time-invariant and time-varying system uncertainties, where the latter also

captures exogenous disturbances. These results guarantee the norm of the system error (i.e., the difference

between the state of an uncertain dynamical system and the state of a given reference model) to be less than

a user-defined constant performance bound. We also refer to [93, 101–106] for studies extending the results

of [21] and [1]. In particular, [101] focus on set-theoretic model reference adaptive control in the presence

of actuator failures, [93] and [102] theoretically blend the results in [21] and [1] with neural networks to

keep the trajectories of uncertain dynamical systems on a given compact set in the absence of structured

system uncertainty parameterizations, and [103] and [104] consider decentralized extensions to large-scale

dynamical systems. Moreover, [105] and [106] respectively consider applications of the results in [21] and

[1] to a generic transport aerospace vehicle and a rigid body space vehicle on exponential coordinates.

As compared with other notable contributions in the literature enforcing similar performance bounds

[18–20, 22–26, 107], the set-theoretic model reference adaptive control framework does not assume that

the control signals can access every element of the state vector as in [18], does not assume that a desired

trajectory along with its derivatives are all available for feedback control design as in [19], enforces user-

defined performance bounds not on measurable output signals as in [20] but on measurable state signals,

and does not involve a backstepping procedure for adaptive control as in [22–26, 107] (also see [1] for

additional details). As noted above, in addition, the results in [1] go beyond the ones in [21] in that both

the exogenous disturbances and the system uncertainties can depend on time in [1] to capture dynamic
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environment conditions and changes in system dynamics. However, a common denominator of the results

in [21] and [1] (including their extensions in [93, 101–106]) is that they assume the user-defined performance

bound to be constant.

The contribution of this paper is to generalize the set-theoretic model reference adaptive control

framework in order to enforce user-defined time-varying performance bounds on the system error, which

gives the control designer a flexibility to control the closed-loop system performance as desired on dif-

ferent time intervals (e.g., transient time interval and steady-state time interval). To this end, two set-

theoretic control architectures are proposed for adaptive command following in the presence of exogenous

disturbances and system uncertainties, where the stability and performance properties of both architectures

are rigorously established using system-theoretic methods. Furthermore, our theoretical findings are also

supported through a numerical example in order to compare these architectures and illustrate their efficacy.

Note that a preliminary conference version of this paper appeared in [108], which only considers one of

the architectures proposed here. The present paper considerably goes beyond this conference version by not

only providing detailed proofs for the considered architecture in [108] but also focusing on all the theoretical

developments necessary for the other architecture presented here with detailed examples, added figures, and

motivation.

Finally, we introduce the fairly standard notation used throughout this paper. Specifically, Rn×m

denotes the set of n×m real matrices, Rn×n
+ (respectively, Rn×n

+ ) denotes the set of n× n positive-definite

(respectively, nonnegative-definite) real matrices, Dn×n denotes the set of n×n real matrices with diagonal

scalar entries, ‖·‖2 denotes the Euclidean norm, and ‖·‖F denotes the Frobenius norm. In addition, we write

‖x‖A ,
√

xTAx for the weighted Euclidean norm of x ∈ Rn with the matrix A ∈ Rn×n
+ , ‖A‖2 ,

√
λmax(ATA)

for the induced 2-norm of the matrix A∈Rn×m, λmin(A) (resp., λmax(A)) for the minimum (resp., maximum)

eigenvalue of the matrix A ∈ Rn×n, and x (resp., x) for the lower bound (resp., upper bound) of a bounded

signal x(t) ∈ Rn, t ≥ 0, that is, x≤ ‖x(t)‖2, t ≥ 0 (resp., ‖x(t)‖2 ≤ x, t ≥ 0).

4.1.2 Problem Formulation

In this section, we introduce a benchmark adaptive command following problem formulation con-

sidered in this paper. In particular, consider the uncertain dynamical system given by

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(t,xp(t)), xp(0) = xp0, t ≥ 0. (4.1)
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In (4.1), xp(t) ∈ Rnp , t ≥ 0, denotes the measurable state vector, u(t) ∈ Rm, t ≥ 0, denotes the control

input, Ap ∈ Rnp×np denotes a known system matrix, and Bp ∈ Rnp×m denotes a known input matrix. Here,

as standard, we assume that the pair (Ap,Bp) is controllable. Furthermore, δp : R+×Rnp → Rm and Λ ∈

Rm×m
+ ∩Dm×m in (4.1) respectively denote a system uncertainty and an unknown control effectiveness matrix.

Considering the widely-adopted system uncertainty parameterization given by (D.1) and feedback

control law given by (D.7), which has nominal un(t), t ≥ 0, and adaptive ua(t), t ≥ 0, controller elements,

one can readily rewrite (4.1) by augmenting an integrator state dynamics as

ẋ(t) = Arx(t)+Brc(t)+BΛ
[
ua(t)+W T(t)σ

(
x(t)
)]
, x(0) = x0, t ≥ 0. (4.2)

We refer to Appendix D for the standard steps in rewriting (4.2) from (4.1). In (4.2), x(t) , [xT
p (t), xT

c (t)]
T

∈Rn, t ≥ 0, is the augmented system state with xc(t) ∈Rnc , t ≥ 0, being the integrator state and n, np+nc,

c(t) ∈ Rnc , t ≥ 0, is a given command, W (t) ,
[
Λ−1W T

p (t), (Λ
−1− Im×m)K

]T ∈ R(s+n)×m, t ≥ 0, is an

unknown aggregated weight matrix, and σ
(
x(t)
)
, [σT

p
(
xp(t)

)
,xT(t)]T ∈Rs+n, t ≥ 0, is a known aggregated

basis function. Motivated by the structure of the terms inside brackets in (4.2), let the adaptive control signal

be given by

ua(t) =−Ŵ T(t)σ
(
x(t)
)
, t ≥ 0, (4.3)

where Ŵ (t) ∈ R(s+n)×m, t ≥ 0, is an estimate of W (t), t ≥ 0, to be defined below.

The design of an update law to construct the estimate Ŵ (t), t ≥ 0, is crucial in any model reference

adaptive control approach in order to achieve a desired level of command following performance, which is

captured by the reference model given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, t ≥ 0, (4.4)

with xr(t) ∈ Rn, t ≥ 0, being the reference state vector. While there are many update law candidates for

this purpose (see, for example, [28–30], and references therein), they do not achieve practical, user-defined

performance guarantees for the adaptive command following problem formulated in this section (see also

Remarks 2.3 and 2.4 given in [1]). As discussed, a notable exception is entitled as set-theoretic model

reference adaptive control architecture [1], where the next remark concisely overviews this result.
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t

D✏

xr(t)
x(t)

Figure 4.1: Illustration of the user-defined constant performance bound in Remark 4.1.1 for scalar reference
model and uncertain dynamical system trajectories.

Remark 4.1.1 For the highlighted problem formulation above, consider the standard set-theoretic model

reference adaptive control update law [1] for (4.3) given by

˙̂W (t) = γ1Projm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (4.5)

with Ŵmax being the projection norm bound. Furthermore, γ1 ∈R+ denotes the learning rate (i.e., adaptation

gain) and e(t) , x(t)− xr(t), t ≥ 0, denotes the system error in (4.5). Note that φd(‖e(t)‖P) in (4.5) can

be viewed as an error dependent learning rate, and hence, the term γ1φd(‖e(t)‖P) in (4.5) acts as the

effective learning rate. Specifically, the update law given by (4.5) can be derived by considering the energy

function V (e,W̃ ) = φ(‖e‖P) + γ
−1
1 tr

[
(W̃Λ1/2)T(W̃Λ1/2)

]
, where Dε , {e(t) : ‖e(t)‖P < ε} and W̃ (t) ,

Ŵ (t)−W (t), t ≥ 0, is the weight estimation error. Note that V (0,0) = 0, V
(
e,W̃

)
> 0 for

(
e,W̃

)
6= (0,0),

and V̇
(
e(t),W̃ (t)

)
≤−1

2 αV (e,W̃ )+µ , where α , λmin(R)
λmax(P)

, d , 2γ
−1
1 w̃ ẇ‖Λ‖2, µ , 1

2 αγ
−1
1 w̃2‖Λ‖2 +d, and

w̃ , Ŵmax +w with ‖W (t)‖F ≤ w, t ≥ 0, and ‖Ẇ (t)‖F ≤ ẇ, t ≥ 0 (we refer to the proof of Theorem 3.1

in [1] for details). By applying Lemma 1 of [23, 25], one can now conclude the boundedness of the pair

(e(t),W̃ (t)) as well as the strict performance bound on the system error given by ‖e(t)‖P < ε , t ≥ 0, under

the assumption ‖e(0)‖P < ε . Figure 4.1 illustrates this constant performance bound for scalar reference

model and uncertain dynamical system trajectories.

Remark 4.1.2 For the standard set-theoretic model reference adaptive control framework [1] overviewed

in the above remark, since ε cannot be chosen less than ‖e(0)‖P by the assumption ‖e(0)‖P < ε , ‖e(t)‖P

cannot be made as small as desired unless ‖e(0)‖ is sufficiently small. For applications when ‖e(0)‖ is small

(e.g., in the presence of almost perfect initial condition knowledge on the state of the uncertain dynamical

system that yields to a sufficiently small system error initialization error), a small ε can be chosen. Yet, a
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small ε selection can lead to a large effective learning rate during the transient time interval, which may

not be preferred for certain control system implementations. Motivated from the above standpoints, it is of

practical interest to enforce user-defined time-varying performance bounds in set-theoretic model reference

adaptive controllers (see next section) in order to give the designer a flexibility to control the closed-loop

system performance as desired on different time intervals, particularly on the transient time and the steady-

state time intervals.

4.1.3 Enforcing Time-Varying Performance Bounds

Based on the adaptive command following problem stated in Section 4.1.2, we now present two

architectures in order to generalize the results documented in [1] that enforce user-defined constant perfor-

mance bounds (see also Remarks 4.1.1 and 4.1.2). In particular, the first architecture given in Section 4.1.3.1

presents a direct approach in that a new control law is designed for enforcing user-defined time-varying

performance bounds. The second architecture given in Section 4.1.3.2 presents an indirect approach in that

we modify the reference model without significantly changing the control architecture of [1] to achieve the

same objective of enforcing user-defined time-varying performance bounds1.

4.1.3.1 Direct Approach

For the direct approach presented in this subsection, we first consider the generalized restricted

potential function given by

φ(‖z‖H) =
‖z‖2

H

ε2(t)−‖z‖2
H
, z ∈ Dε . (4.6)

Note that (4.6) has the partial derivative φd(‖z‖H) = ε2(t)/
(
ε2(t)−‖z‖2

H
)2

> 0, z ∈ Dε , with respect to

‖z‖2
H, which satisfies 2φd(‖z‖H)‖z‖2

H−φ(‖z‖H) =
(

ε2(t)‖z‖2
H +‖z‖4

H

)
/
(
ε2(t)−‖z‖2

H
)2

> 0, z∈Dε . Thus,

(4.6) satisfies all properties i)–vi) of generalized restricted potential functions stated in the last paragraph of

Appendix F. Here, ε(t) is a positive and bounded-away-from-zero user-defined parameter.

Next, let the adaptive control law be given by

ua(t) =−Ŵ T(t)σ
(
x(t)
)
− v(t), t ≥ 0, (4.7)

1see Appendix E for further remarks on these two approaches.

55



www.manaraa.com

where v(t) ∈ Rm, t ≥ 0, is an additive signal, and Ŵ (t) ∈ R(s+n)×m, t ≥ 0, is the estimate of W (t), t ≥ 0,

satisfying the update law (4.5). In particular, we let the additive signal v(t), t ≥ 0, be

v(t) = BTPe(t)q̂(t)
|ε̇(t)|
ε(t)

λmax(P), t ≥ 0, (4.8)

where q̂(t) ∈ R+, t ≥ 0, is the estimate of the (partially) unknown parameter q , λ
−1
min(PBΛBTP) with an

unknown bound (i.e., |q| ≤ qmax) satisfying the adaptive parameter update law

˙̂q(t) = γ2Proj
(

q̂(t),φd(‖e(t)‖P)||e(t)||22
|ε̇(t)|
ε(t)

)
, q̂(0) = q̂0 ∈ R+, t ≥ 0, (4.9)

with 0 and q̂max being the minimum and maximum projection bounds respectively and γ2 ∈ R+ being the

learning rate.

For the next theorem presenting the first contribution of this paper, one can write the system error

dynamics, the weight estimation error dynamics, and the adaptive parameter estimation error dynamics

respectively as

ė(t) = Are(t)−BΛW̃ T(t)σ
(
x(t)
)
−BΛv(t), e(0) = e0, t ≥ 0, (4.10)

˙̃W (t) = γ1Projm
(
Ŵ (t),φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0, (4.11)

˙̃q(t) = γ2Proj
(

q̂(t),φd(‖e(t)‖P)||e(t)||22
|ε̇(t)|
ε(t)

)
, q̃(0) = q̃0, t ≥ 0, (4.12)

where W̃ (t) , Ŵ (t)−W (t), t ≥ 0, is the weight estimation error and q̃(t) , q̂(t)−q, t ≥ 0, is the adaptive

parameter estimation error. Note that we inherently assume ε(t), t ≥ 0, and ε̇(t), t ≥ 0, are smooth and

bounded user-defined functions.

Theorem 4.1.1 Consider the uncertain dynamical system given by (4.1) subject to Assumption D.1, the

reference model given by (4.4), and the feedback control law given by (D.7) along with (D.8), (4.5), (4.7),

(4.8), and (4.9). If ‖e0‖P < ε(0), then the closed-loop dynamical system given by (4.10), (4.11), and (4.12)

are bounded, where the bound on the system error satisfies the a-priori given, user-defined time-varying

performance bound

‖e(t)‖P < ε(t), t ≥ 0. (4.13)
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Proof. To show boundedness of the closed-loop dynamical system given by (4.10), (4.11), and

(4.12), consider the energy function V :Dε ×R(n+s)×m×R→ R+ given by

V (e,W̃ , q̃) = φ(‖e‖P)+ γ
−1
1 tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
+ γ
−1
2 q̃2

λmax(P)λmin(PBΛBTP), (4.14)

where Dε , {e(t) : ‖e(t)‖P < ε(t)}, and P ∈ Rn×n
+ is a solution of the Lyapunov equation in (D.9) with

R ∈ Rn×n
+ . Note that V (0,0,0) = 0, V

(
e,W̃ , q̃

)
> 0 for

(
e,W̃ , q̃

)
6= (0,0,0), and

dφ(‖e(t)‖P)

dt
= 2φd(‖e(t)‖P)eT(t)Pė(t)−2φd(‖e(t)‖P)‖e(t)‖2

P
ε̇(t)
ε(t)

. (4.15)

Specifically, the time derivative of (4.14) along the closed-loop system trajectories (4.10), (4.11), and (4.12)

is given by

V̇
(
e(t),W̃ (t), q̃(t)

)
=

dφ(‖e(t)‖P)

dt
+2γ

−1
1 trW̃ T(t) ˙̃W (t)Λ+2γ

−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP)

= 2φd(‖e(t)‖P)eT(t)Pė(t)−2φd(‖e(t)‖P)‖e(t)‖2
P

ε̇(t)
ε(t)

+2γ
−1
1 trW̃ T(t)

(
γ1Projm

(
Ŵ (t),φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

)
−Ẇ (t)

)
Λ

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP)

= 2φd(‖e(t)‖P)eT(t)PAre(t)−2φd(‖e(t)‖P)eT(t)PBΛW̃ T(t)σ
(
x(t)
)

+2trW̃ T(t)Projm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
Λ

−2γ
−1
1 trW̃ T(t)Ẇ (t)Λ−2φd(‖e(t)‖P)eT(t)PBΛv(t)

−2φd(‖e(t)‖P)‖e(t)‖2
P

ε̇(t)
ε(t)

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP)

= 2φd(‖e(t)‖P)eT(t)PAre(t)−2tr
(
Ŵ T(t)−W T(t)

)(
φd(‖e(t)‖P)σ

(
x(t)
)

·eT(t)PB−Projm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

))
Λ

−2γ
−1
1 trW̃ T(t)Ẇ (t)Λ−2φd(‖e(t)‖P)eT(t)PBΛv(t)

−2φd(‖e(t)‖P)‖e(t)‖2
P

ε̇(t)
ε(t)

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP). (4.16)
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Now, using the property of projection operator stated in Appendix F, one can write

V̇
(
e(t),W̃ (t), q̃(t)

)
≤ −φd(‖e(t)‖P)eT(t)Re(t)+d−2φd(‖e(t)‖P)eT(t)PBΛv(t)

−2φd(‖e(t)‖P)‖e(t)‖2
P

ε̇(t)
ε(t)

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP). (4.17)

In addition, using the proposed additive signal v(t) in (4.8), it follows from (4.17) that

V̇
(
e(t),W̃ (t), q̃(t)

)
≤ −φd(‖e(t)‖P)eT(t)Re(t)+d

−2φd(‖e(t)‖P)eT(t)PBΛBTPe(t)q̂(t)
|ε̇(t)|
ε(t)

λmax(P)

−2φd(‖e(t)‖P)‖e(t)‖2
P

ε̇(t)
ε(t)

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d

−2φd(‖e(t)‖P)‖e(t)‖2
2q̂(t)

|ε̇(t)|
ε(t)

λmax(P)λmin(PBΛBTP)

+2φd(‖e(t)‖P)‖e(t)‖2
P
|ε̇(t)|
ε(t)

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d

−2φd(‖e(t)‖P)‖e(t)‖2
2q̂(t)

|ε̇(t)|
ε(t)

λmax(P)λmin(PBΛBTP)

+2φd(‖e(t)‖P)eT(t)Pe(t)
|ε̇(t)|
ε(t)

qλmin(PBΛBTP)

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d

−2φd(‖e(t)‖P)‖e(t)‖2
2q̃(t)

|ε̇(t)|
ε(t)

λmax(P)λmin(PBΛBTP)

+2γ
−1
2 q̃(t) ˙̃q(t)λmax(P)λmin(PBΛBTP)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d

+2
(
q̂(t)−q

)(
Proj

(
q̂(t),φd(‖e(t)‖P)‖e(t)‖2

2
|ε̇(t)|
ε(t)

)

−φd(‖e(t)‖P)‖e(t)‖2
2
|ε̇(t)|
ε(t)

)
λmax(P)λmin(PBΛBTP). (4.18)

Once again, using the property of projection operator stated in Appendix F, one further writes

V̇
(
e(t),W̃ (t), q̃(t)

)
≤ −φd(‖e(t)‖P)eT(t)Re(t)+d. (4.19)

58



www.manaraa.com

Finally, it follows from (4.19) that

V̇
(
e(t),W̃ (t), q̃(t)

)
≤ −αφd(‖e(t)‖P)eT(t)Pe(t)+d +

1
2

αφ(‖e(t)‖P)−
1
2

αφ(‖e(t)‖P)

+
1
2

αγ
−1
1 tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
− 1

2
αγ
−1
1 tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]

+
1
2

αγ
−1
2 q̃2(t)λmax(P)λmin(PBΛBTP)− 1

2
αγ
−1
2 q̃2(t)λmax(P)

·λmin(PBΛBTP)

≤ −1
2

α

(
φ(‖e(t)‖P)+ γ

−1
1 tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
+ γ
−1
2 q̃2(t)λmax(P)

·λmin(PBΛBTP)
)
−α

[
φd(‖e(t)‖P)eT(t)Pe(t)− 1

2
φ(‖e(t)‖P)

]

+
1
2

αγ
−1
1 tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
+

1
2

αγ
−1
2 q̃2(t)λmax(P)λmin(PBΛBTP)+d

≤ −1
2

αV (e,W̃ , q̃)−α

[
φd(‖e(t)‖P)eT(t)Pe(t)− 1

2
φ(‖e(t)‖P)

]
+µ. (4.20)

Using the property (F.3), the expression (4.20) can be rewritten as

V̇
(
e(t),W̃ (t), q̃(t)

)
≤ −1

2
αV (e,W̃ , q̃)+µ, (4.21)

where α , λmin(R)
λmax(P)

, d , 2γ
−1
1 w̃ ẇ‖Λ‖2, and µ , 1

2 αγ
−1
1 w̃2‖Λ‖2 +

1
2 αγ

−1
2 q̃2

max +d, with q̃max , qmax + q̂max.

Now, using similar steps in Remark 3.3 of [1], it follows from (4.21) that V (e,W̃ , q̃) is upper bounded by

Vmax ,max
{

V0,
2µ

α

}
, V0 ,V (e(0),W̃ (0), q̃(0)). (4.22)

From (4.14), one can also write

φ(‖e(t)‖P)+ γ
−1
1 tr

[
(W̃ (t)Λ1/2)T(W̃ (t)Λ1/2)

]
+ γ
−1
2 q̃2(t)λmax(P)λmin(PBΛBTP)≤Vmax, t ≥ 0. (4.23)

Hence, φ(‖e(t)‖P)≤Vmax, t ≥ 0. Now, since ‖e0‖P < ε(0), it follows from (4.6) that ‖e(t)‖P < ε(t), t ≥ 0,

which gives the result. �

Remark 4.1.3 For visualization, block diagram of the direct approach introduced and analyzed in this

subsection is given in Figure 4.2. This generalized set-theoretic model reference adaptive control archi-

tecture provides the flexibility to control the closed-loop system performance as desired on different time

intervals. This flexibility results from the selection of the user-defined time-varying parameter ε(t), t ≥ 0,
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Ŵ (t), q̂(t)

+
u(t)

–

xr(t)c(t) Reference Model in (4.4)

x(t)Uncertain Dynamical System in (4.1)

+
e(t)

ua(t)
Adaptive Controller
in (4.7) with (4.8)

Nominal Controller in (E.8)
un(t)

+

and Integrator State Dynamics in (E.2)

Weight Update Laws in Eqs. (4.5) and (4.9)
ε(t)

x(t) e(t)ε(t)

Figure 4.2: Block diagram of the set-theoretic model reference adaptive control architecture in Section
4.1.3.1.

t

D✏

xr(t)
x(t)

Figure 4.3: Illustration of the user-defined time-varying performance bound in Remark 4.1.3 for scalar
reference model and uncertain dynamical system trajectories.

which upper bounds the system error (4.13). Comparable to Figure 4.1 depicting the constant performance

bound case, Figure 4.3 illustrates this time-varying performance bound for scalar reference model and

uncertain dynamical system trajectories.

4.1.3.2 Indirect Approach

In this subsection, we now present the indirect approach as an alternative to the direct approach

presented above. To this end, we modify the reference model without significantly changing the control

architecture of [1] to achieve the same objective of enforcing user-defined time-varying performance bounds.

Mathematically speaking, we consider the modified reference model given by

ẋrm(t) = Arxrm(t)+Brc(t)+ζ (t), xrm(0) = xr0, t ≥ 0, (4.24)

where ζ (t) ∈ Rn, t ≥ 0, is an added term defined below and xrm(t) ∈ Rn, t ≥ 0, is the modified reference

state vector.
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Now, let em(t), x(t)− xrm(t), t ≥ 0, and consider the transformation given by

eξ (t) = ξ (t)em(t), t ≥ 0, (4.25)

where ξ (t) ∈ R+, t ≥ 0, is the scalar transformation parameter, which is introduced to achieve any desired

performance bound as discussed below. Moreover, for the indirect approach of this subsection, we consider

the generalized restricted potential function given by

φ(‖z‖H) =
‖z‖2

H
ε0−‖z‖H

, z ∈ Dε0 , (4.26)

which has the partial derivative φd(‖z‖H) = ε0− 1
2‖z‖H/

(
ε0−‖z‖H

)2
> 0, z ∈ Dε0 , with respect to ‖z‖2

H

satisfying 2φd(‖z‖H)‖z‖2
H− φ(‖z‖H) = ε0‖z‖2

H/
(
ε0−‖z‖H

)2
> 0, z ∈ Dε0 . It is clear that (4.26) satisfies

all properties i)–vi) stated in the last paragraph of Appendix F with ε0 being a positive and bounded-away-

from-zero parameter.

Next, let the adaptive control law be given by (4.3), where Ŵ (t) ∈ R(s+n)×m, t ≥ 0, is the estimate

of W (t), t ≥ 0, satisfying the update law

˙̂W (t) = γ1Projm
(

Ŵ (t),ξ (t)φd(‖eξ (t)‖P)σ
(
x(t)
)
eT

ξ
(t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (4.27)

with Ŵmax being the projection norm bound. In (4.27), γ1 ∈ R+ is the learning rate (i.e., adaptation gain),

P∈Rn×n
+ is a solution of the Lyapunov equation given by (D.9). One can readily construct the error dynamics

as

ėm(t) = Arem(t)−BΛW̃ T(t)σ
(
x(t)
)
−ζ (t), em(0) = em0, t ≥ 0, (4.28)

where it follows from (4.25) that

ėξ (t) = ξ̇ (t)em(t)+Areξ (t)−Bξ (t)ΛW̃ T(t)σ
(
x(t)
)
−ξ (t)ζ (t), eξ (0) = eξ 0, t ≥ 0. (4.29)

Finally, let

ζ (t) , ξ̇ (t)ξ−1(t)em(t), t ≥ 0, (4.30)
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where it now follows from (4.29) that

ėξ (t) = Areξ (t)−ξ (t)BΛW̃ T(t)σ
(
x(t)
)
, eξ (0) = eξ 0, t ≥ 0, (4.31)

which denotes the transformed system error dynamics. For the next theorem presenting the second contri-

bution of this paper, one can also give the weight estimation error dynamics as

˙̃W (t) = γ1Projm
(
Ŵ (t),ξ (t)φd(‖eξ (t)‖P)σ

(
x(t)
)
eT

ξ
(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0, (4.32)

where W̃ (t), Ŵ (t)−W (t), t ≥ 0. Note that we inherently assume ξ (t), t ≥ 0, and ξ̇ (t), t ≥ 0, are smooth

and bounded user-defined functions.

Theorem 4.1.2 Consider the uncertain dynamical system given by (4.1) subject to Assumption D.1, the

reference model given by (4.4), and the feedback control law given by (D.7) along with (D.8), (4.3), and

(4.27). If ‖em0‖P < ε0
ξ (0) , then the closed-loop dynamical system given by (4.31) and (4.32) are bounded,

where the bound on the system error satisfies the a-priori given, user-defined time-varying performance

bound

‖em(t)‖P <
ε0

ξ (t)
, t ≥ 0. (4.33)

Proof. To show boundedness of the closed-loop dynamical system given by (4.31) and (4.32)

consider the energy function V :Dε0×R(n+s)×m→ R+ given by

V (eξ ,W̃ ) = φ(‖eξ‖P)+ γ
−1
1 tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
, (4.34)

where Dε0 , {eξ (t) : ‖eξ (t)‖P < ε0}, and P ∈ Rn×n
+ is a solution of the Lyapunov equation in (D.9) with

R ∈ Rn×n
+ . Note that V (0,0) = 0, V

(
eξ ,W̃

)
> 0 for

(
eξ ,W̃

)
6= (0,0), and it follows from similar steps in

Theorem 3.1 of [1] that

V̇
(
eξ (t),W̃ (t)

)
≤ −1

2
αV (eξ ,W̃ )+µ, (4.35)
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+
u(t)

eξ(t)

–

xrm(t)
c(t) Modified Reference Model in (4.24)

x(t)Uncertain Dynamical System in (4.1)

Weight Update Law in Eq. (4.27)
Ŵ (t)

+

ξ(t)

em(t)

ζ(t)

ξ(t)

ua(t)
Adaptive Controller

in (4.3)

Nominal Controller in (E.8)
un(t)

Modification term in (4.30)

+

and Integrator State Dynamics in (E.2)

x(t)

ξ(t)

Figure 4.4: Block diagram of the set-theoretic model reference adaptive control architecture in Section
4.1.3.2.

where α , λmin(R)
λmax(P)

, d , 2γ
−1
1 w̃ ẇ‖Λ‖2, and µ , 1

2 αγ
−1
1 w̃2‖Λ‖2+d. By applying Lemma 1 of [25] and [23],

the boundedness of the closed-loop dynamical system (4.31) and (4.32) is immediate, where the bound on

the system error satisfies the a-priori given, user-defined performance bound

‖eξ (t)‖P < ε0, t ≥ 0. (4.36)

Now, by using (4.25) one can readily obtain

‖em(t)‖P <
ε0

ξ (t)
, t ≥ 0, (4.37)

which completes the proof. �

Remark 4.1.4 For visualization, block diagram of the indirect approach introduced and analyzed in this

subsection is given in Figure 4.4. Specifically, as a consequence of Theorem 4.1.2 and for a given ε0, the term

ξ (t), t ≥ 0, can be adjusted in order to control the closed-loop system performance as desired on different

time intervals. Here, we note that since the modified reference model differs from the ideal, unmodified

reference model in (4.4) by the magnitude of ζ (t), t ≥ 0, given by (4.30), one can readily conclude that if

the time rate of change of ξ (t), t ≥ 0, is small, then the modified reference model approximately behaves as

the ideal, unmodified reference model considering that the magnitudes of ξ−1(t), t ≥ 0, and em(t), t ≥ 0, are

not large.
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Remark 4.1.5 We now make the argument given in the last sentence of Remark 4.1.4 rigorous. To this end,

define x̃(t) , xrm(t)− xr(t), t ≥ 0, which captures the distance between the modified reference model state

vector and the ideal, unmodified reference model state vector. Now, using (4.4) and (4.24), one can write

˙̃x(t) = Arx̃(t)+ ξ̇ (t)ξ−1(t)em(t), x̃(0) = 0, t ≥ 0. (4.38)

Using the fact that for an asymptotically stable matrix Ar ∈ Rn×n, ‖eArt‖ ≤ κe−β t , t ≥ 0, where κ > 0 and

0 < β <−α(Ar), where α(Ar),max
{

Re(λ ) : λ ∈ spec(Ar)
}

[109], it follows that

‖x̃(t)‖2 ≤ κ

β
|ξ̇ (t)| |ξ−1(t)| ‖em(t)‖2, t ≥ 0. (4.39)

Since ξ (t), t ≥ 0, and ξ̇ (t), t ≥ 0, are considered to be smooth and bounded user-defined functions, one can

write ξ (t)≥ ξ , t ≥ 0, and ξ̇ (t)≤ ξ̇ , t ≥ 0; hence, it follows from (4.37) and (4.39) that

‖x̃(t)‖2 ≤ κξ̇ ε0

βξ
2√

λmin(P)
, t ≥ 0. (4.40)

As expected, (4.40) now rigorously shows that if the time rate of change of ξ (t) is small, then the modified

reference model approximately behaves as the ideal, unmodified reference model. Finally, one can also

compute the worst-case deviation of the uncertain system trajectory from the ideal, unmodified system

trajectory as

‖x(t)− xr(t)‖2 = ‖em(t)+ x̃(t)‖2 ≤ ‖em(t)‖2 +‖x̃(t)‖2

≤ ε0

ξ
√

λmin(P)
+

κξ̇ ε0

βξ
2√

λmin(P)

≤ ε0

ξ
√

λmin(P)

[
1+

κξ̇

βξ

]
, t ≥ 0. (4.41)

4.1.4 Illustrative Numerical Example

We now present a numerical example to illustrate the direct and indirected generalized set-theoretic

model reference adaptive control approaches presented in Theorems 4.1.1 and 4.1.2. For this purpose,

consider the uncertain dynamical system representing a controlled wing rock dynamics model [32]
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ẋp(t) =




0 1

0 0


xp(t)+




0

1



(

Λu(t)+δp(t,xp(t))
)
, xp(0) = 0 t ≥ 0, (4.42)

where xp(t) =
[
xp1(t) xp2(t)

]T with xp1(t) representing the roll angle (in rad) and xp2(t) representing the

roll rate (in rad/sec). In (4.42), δp(t,xp(t)) represents an uncertainty of the form

δp(t,xp(t)) = α1 sin(t)+α2xp1 +α3xp2 +α4|xp1|xp2 +α5|xp2|xp2 +α6x3
p1, (4.43)

with α1 = 0.25, α2 = 0.5, α3 = 1.0, α4 = −1.0, α5 = 1.0, and α6 = 1.0, and Λ = 0.75 represents an

uncertain control effectiveness matrix. For command following, we let Ep =
[
1, 0

]
in (D.2) and choose a

linear nominal controller gain matrix K = [5.49,3.78,2.89] in (D.8), which yields to the reference model

given by

ẋr(t) =




0 1 0

−5.5 −3.8 −2.9

1 0 0




xr(t)+




0

0

−1




c(t) xr(0) = 0 t ≥ 0. (4.44)

In addition, we choose the basis function as

σ(x) =
[
1, xp1, xp2, |xp1|xp2, |xp2|xp2, x3

p1, xT]T. (4.45)

For the proposed set-theoretic model reference adaptive control architecture in Theorem 4.1.1,

we use the generalized restricted potential function given in (4.6). We choose the smooth time-varying

performance bound ε(t), t ≥ 0. Finally, we set the projection norm bounds imposed on each element of the

weight estimate and adaptive parameter estimate to Ŵmax = 15 and q̂max = 10 respectively, and use R = I

to calculate P from (D.9) for the resulting Ar matrix. Figures regarding the closed-loop dynamical system

performance are not presented since the system response with the nominal controller is unstable. In Figure

4.5, we apply the proposed set-theoretic adaptive controller with γ1 = 1 and γ2 = 1, where Figure 4.6 clearly

illustrates its efficacy as well as the results of Theorem 4.1.1.

For the proposed set-theoretic model reference adaptive control architecture in Theorem 4.1.2,

we use the generalized restricted potential function given by (4.26) with ε0 = 1 and we set the scalar
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transformation parameter in (4.25) to ε−1(t) (to have the same time-varying performance bound we have as

above in this example for Theorem 4.1.1). Furthermore, we set the projection norm bound imposed on each

element of the parameter estimate to Ŵmax = 15 and use R = I to calculate P from (D.9) for the resulting
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Figure 4.5: Command following performance with the generalized direct set-theoretic model reference
adaptive control approach in Theorem 4.1.1.
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Figure 4.6: Norm of the system error trajectories with the generalized direct set-theoretic model reference
adaptive control approach and the evolution of the effective learning rate γ1φd(·) in Theorem 4.1.1.
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Figure 4.7: Command following performance with the generalized indirect set-theoretic model reference
adaptive control approach in Theorem 4.1.2.
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Figure 4.8: Norm of the system error trajectories with the generalized indirect set-theoretic model reference
adaptive control approach and the evolution of the effective learning rate γ1ξ (t)φd(·) in Theorem 4.1.2.

Ar matrix. Figure 4.7 shows the closed-loop dynamical system performance with the proposed controller in

Theorem 4.1.2 with γ1 = 1, where Figure 4.8 clearly illustrates its efficacy and the results in Theorem 4.1.2.
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4.1.5 Conclusion

In this paper, we generalized the set-theoretic model reference adaptive control framework in order

to enforce user-defined time-varying performance bounds on the norm of the system error (i.e., the difference

between the state of an uncertain dynamical system and the state of a given reference model). This general-

ization gives the designer a flexibility to control the closed-loop system performance as desired on different

time intervals (e.g., transient time interval and steady-state time interval). Specifically, we presented two

approaches, namely the direct approach (see Section 4.1.3.1) and the indirect approach (see Section 4.1.3.2),

where the stability and performance properties of both architectures were rigorously established. It was

noted that the direct approach has the capability to strictly enforce a user-defined time-varying performance

bound (see Theorem 4.1.1 and Remark 4.1.3), whereas the indirect approach approximately enforces this

performance bound with the approximation accuracy depending on the time rate of change of this bound

(see Theorem 4.1.2, Remark 4.1.4, and Remark 4.1.5).

It was further observed from the presented illustrative numerical example (see Section 4.1.4) that

both approaches work effectively as expected for the considered adaptive command following problem in the

presence of exogenous disturbances and system uncertainties. While the direct approach enforces strict user-

defined time-varying performance bounds as compared with the indirect approach enforcing approximate

performance bounds, Figures 4.6 and 4.8 showed that the indirect approach results in significantly smaller

effective learning rates as compared with the direct approach, where this can be important for certain

control systems implementations. Motivated from this standpoint, future research will include high-fidelity

simulation studies and experimentations on unmanned aerial vehicles to further understand this interplay

between strict versus approximate time-varying performance bound enforcement and their resulting effective

learning rates. Future research will also include output-feedback extensions of the proposed approaches for

set-theoretic model reference adaptive control in the absence of measurable state vectors.

4.2 A Command Governor Approach to Set-Theoretic Model Reference Adaptive Control for En-
forcing Partially Adjustable Performance Guarantees2

In feedback control, the presence of system uncertainties cause the system state trajectories to

deviate from their ideal responses. In practice, a subset of these trajectories can be more critical than

the rest due to physical and/or performance characteristics associated with a problem of interest. As a

2This section has been submitted to the International Journal of Robust and Nonlinear Control for possible publication.
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consequence, it is desired not only to have performance guarantees on the entire system state trajectories

but also to be able to adjust the resulting worst-case performance bound specifically for that critical subset.

Yet, in the model reference adaptive control of uncertain dynamical systems, assigning performance bounds

on a subset of system trajectories is not a trivial problem. In this paper, we address this gap by proposing

a new control architecture that has the capability to enforce an a-priori given, user-defined performance

bound on the selected subset of dynamical system trajectories, entitled as partially adjustable performance

guarantees. The proposed control architecture is predicated on a set-theoretic treatment and utilizes a two-

level constructive design framework. In particular, we first form an auxiliary state dynamics in order to

construct the auxiliary system error vector between uncertain dynamical system states and this auxiliary

dynamics states. This construction aids a control designer to weigh each element of the auxiliary system

error vector independently, while enforcing performance bounds on the norm of this error vector. Then,

a command governor mechanism is designed for driving a feasible user-selected subset of system states

to a close (and user-controllable) neighborhood of the corresponding reference model states. This results

in adjustable performance guarantees on a subset of system error trajectories. Two illustrative numerical

examples are also provided to demonstrate the efficacy of the proposed architecture.

4.2.1 Introduction

4.2.1.1 Literature Review and Contribution

Model reference adaptive control methods are effective system-theoretical tools, which can cope

with the adverse effects in the dynamics of physical systems resulting from exogenous disturbances and

system uncertainties. Yet, their resulting worst-case bounds on the system error vector between the states of

an uncertain dynamical system and the states of a given ideal reference model may not be practically useful

for evaluating their transient and steady-state performance. This is due to (excessive) conservatism of these

bounds as well as their dependence on system uncertainties. To overcome this limitation, [1, 2, 18–20, 22]

present notable contributions to enforce performance guarantees on the system error vector.

Specifically, the authors of [18] present an error transformation approach to transform an uncertain

dynamical system subject to performance constraints into an equivalent form without constraints. Yet,

it is assumed that the control signals can access to every element of the state vector. This limitation is

addressed in [19], but under the assumption that a desired trajectory and its derivatives are available. The

same approach is used in [20] for enforcing constraints on measurable output signals using a switching
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controller. Furthermore, restricted potential functions (barrier Lyapunov functions) are employed in [22]

to address performance guarantees on the components of system error vector for the systems in Brunovsky

normal form, where the system is assumed to be accurate with no uncertainties or external disturbances. We

also refer to the introduction section of [1] for other approaches similar in spirit to [18–20, 22].

Unlike the control schemes in [18–20, 22], the authors of [1, 2] considered uncertain dynamical

systems subject to performance constraints in the context of model reference adaptive control. In particular,

the proposed approach in [1, 2], which is entitled as the set-theoretic model reference adaptive control

architecture, has the capability to enforce user-defined strict performance guarantees on the entire norm of

the system error vector. Yet, from a practical standpoint, a subset of system state trajectories can be more

critical than the rest. As a consequence, it is often desired not only to have strict guarantees on the norm

of the entire system error vector but also to be able to adjust the resulting worst-case performance bound

specifically for that critical subset. This practical limitation becomes more prominent when the number of

system states gets large. Therefore, although the set-theoretic model reference adaptive control architecture

allows one to enforce performance guarantees, it can suffer from the fact that the performance guarantees

cannot be applied in a readily adjustable way on a subset of system state trajectories (see Section 4.2.1.2 for

a motivational example).

In this paper, we address the aforementioned gap by developing a new model reference adaptive

control architecture that has the capability to enforce an a-priori given, user-defined performance bound on

the selected subset of dynamical system trajectories, entitled as partially adjustable performance guaran-

tees. The proposed control architecture is predicated on a set-theoretic treatment and utilizes a two-level

constructive design framework. In particular:

• First, we form an auxiliary state dynamics in order to construct the auxiliary system error vector

between uncertain dynamical system states and this auxiliary dynamics states. This construction aids

a control designer to weigh each element of the auxiliary system error vector independently, while

enforcing performance bounds on the norm of this error vector.

• Then, a command governor mechanism is designed for driving a feasible user-selected subset of

system states to a close (and user-controllable) neighborhood of the corresponding reference model

states.

Two illustrative numerical examples are also provided to demonstrate the efficacy of the proposed architec-

ture.
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We also note that the authors made two earlier attempts in conference papers [110, 111] on achieving

partially adjustable strict performance guarantees with the set-theoretic model reference adaptive control

architecture, where a convex optimization method is used in [110] (that is not only different than the two-

level constructive design framework proposed in this paper but also this optimization procedure involves

linear matrix inequalities that may yield to infeasible or near optimal numerical solutions system error

vector dimension increases) and the technique adopted in [111] utilizes a restrictive (structural) condition

(see Assumption 2 of [111]). Finally, a preliminary conference version of this paper appeared in [112]. The

present paper significantly goes beyond this conference version by not only providing detailed proofs for

the considered architecture in [112] but also focusing on all the theoretical developments necessary for the

generalization of the results with detailed examples, added figures, and motivation.

4.2.1.2 A Motivational Example

To elucidate the motivation behind the proposed approach of this paper, consider an uncertain short-

period dynamics given in Example 10.1 of [30]. In this control problem, through applying an adaptive

control signal to the elevator deflection δe(t), a control designer is interested in driving the short-period

states, the angle of attack α(t) and the pitch rate q(t), to a desired reference model trajectory with αr(t) and

qr(t) being its states. For this problem setup, the standard set-theoretic model reference adaptive control

architecture in [1] can be used to enforce the strict performance bound on the system error vector given by

[
α(t)−αr(t) q(t)−qr(t)

]
P




α(t)−αr(t)

q(t)−qr(t)


< ε

2, t ≥ 0, (4.46)

where ε is a user-defined performance bound and P is a positive definite solution for the Lyapunov equation

0 = AT
r P+PAr +R for a given positive definite R with Ar being a Hurwitz system matrix of the desired

reference model. Note that the structure of matrix P in (4.46) determines how the user-defined bound ε

is distributed among the system error vector components — the angle of attack error and the pitch rate

error signals. To further explain this point, consider a scenario where it is essential to track the angle of

attack reference signal precisely, but deviation in the pitch rate can be tolerated. In this case, the standard

set-theoretic model reference adaptive control architecture does not provide a constructive flexibility for a

control designer to prioritize the angle of attack over the pitch rate.
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This limitation clearly becomes more prominent as the number of system states gets large. To

address this problem, we here present a constructive methodology to develop a new set-theoretic model

reference adaptive control architecture to drive a feasible user-selected subset of system states to a close

(and user-controllable) neighborhood of the corresponding reference model states, resulting in adjustable

performance guarantees on a subset of system error trajectories.

4.2.1.3 Notation

A standard notation is used throughout this paper. In particular, R,Rn and Rn×m respectively

denote the set of (real) numbers, the set of n× 1 real column vectors, and the set of n×m real matrices;

R+ (respectively, R+) and Dn×n respectively denote the set of positive (respectively, nonnegative-definite)

numbers and the set of n× n matrices with diagonal scalar entries; 0n×n denotes the n× n zero matrix;

and “,” denotes equality by definition. Furthermore, (·)T stands for the transpose, (·)−1 stands for the

inverse, tr(·) stands for the trace, ‖ · ‖2 stands for the Euclidean norm, ‖ · ‖F stands for the Frobenius

norm, ‖ · ‖H stands for the weighted Euclidean norm (i.e., ‖x‖A =
√

xTAx for x ∈ Rn and A ∈ Rn×n
+ ), and

‖A‖2 ,
√

λmax(ATA) stands for the induced 2-norm of matrix A ∈ Rn×m. Finally, two key definitions,

namely the definition of the projection operator and the definition of the generalized restricted potential

function, is included in Appendix F for completeness.

4.2.2 Problem Formulation

In this section, we first present the adaptive command following problem formulation considered

in this paper and then provide a concise overview of the set-theoretic model reference adaptive control

architecture based on the results documented in [1].

4.2.2.1 Adaptive Command Following

Consider the class of uncertain dynamical systems given by

ẋ(t) = Ax(t)+BΛ
(
u(t)+δ (t,x(t))

)
, x(0) = x0, t ≥ 0. (4.47)

In (4.47), x(t) ∈ Rn, t ≥ 0, denotes the measurable state vector, u(t) ∈ Rm, t ≥ 0, denotes the control input,

A ∈ Rn×n denotes a known system matrix, B ∈ Rn×m denotes a known input matrix, Λ ∈ Rm×m
+ ∩Dm×m
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denotes an unknown control effectiveness matrix, and δ : R+×Rn → Rm denotes a time-varying system

uncertainty due to exogenous disturbances and unknown model parameters. As standard, we consider

here that the pair (A,B) is controllable. To capture a desired closed-loop dynamical system behavior, now

consider the ideal reference model given by

ẋri(t) = Arxri(t)+Brcd(t), xri(0) = xri0, t ≥ 0. (4.48)

In (4.48), xri(t) ∈ Rn, t ≥ 0, denotes the ideal reference state vector, cd(t) ∈ Rnc , t ≥ 0, denotes a desired

uniformly continuous bounded command, Ar ∈ Rn×n denotes the Hurwitz reference model matrix, and Br ∈

Rn×nc denotes the command input matrix. A standard assumption on system uncertainty parameterization is

next introduced (see, for example, [28–30]).

Assumption 4.2.1 Consider the parametrization for the system uncertainty δ : R+×Rn→ Rm given by

δ (t,x(t)) = W T
0 (t)σ0(x(t)). (4.49)

In (4.49), W0(t) ∈ Rs×m, t ≥ 0, denotes a bounded unknown weight matrix (i.e., ‖W0(t)‖F ≤ w0, t ≥ 0) with

a bounded time rate of change (i.e., ‖Ẇ0(t)‖F ≤ ẇ0, t ≥ 0) and σ0 : Rn→Rs denotes a known basis function

with the elements σ0i(x(t)), i = 1, . . . ,s.

Using Assumption 4.2.1, (4.47) can be rewritten as

ẋ(t) = Ax(t)+BΛ
(
u(t)+W T

0 (t)σ0(x(t))
)
, x(0) = x0, t ≥ 0. (4.50)

For (4.50), we now consider the feedback control algorithm given by

u(t) = un(t)+ua(t), t ≥ 0. (4.51)

In (4.51), un(t) ∈ Rm, t ≥ 0, and ua(t) ∈ Rm, t ≥ 0, respectively stand for the nominal and adaptive control

laws. Moreover, we consider without loss of much generality that, the nominal control law satisfies the form

given by

un(t) =−K1x(t)+K2c(t), t ≥ 0. (4.52)
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In (4.52), K1 ∈Rm×n and K2 ∈Rm×nc need to be respectively selected to ensure Ar = A−BK1 and Br = BK2.

Furthermore, c(t) ∈Rnc denotes the actual applied command signal (see Section 4.2.3.1). We let the desired

command signal equivalent to the actual one (i.e., c(t)≡ cd(t), t ≥ 0) only for the results of this section.

Based on the above definitions, (4.50) can be rewritten as

ẋ(t) = Arx(t)+Brc(t)+BΛ
(
ua(t)+W T(t)σ

(
x(t),c(t)

))
, x(0) = x0, t ≥ 0. (4.53)

In (4.53), W (t),
[
W T

0 (t), (Λ
−1 −Im×m)K1, −(Λ−1− Im×m)K2

]T ∈R(s+n+nc)×m, t ≥ 0, denotes an unknown

weight matrix and σ
(
x(t),c(t)

)
,
[
σT

0
(
x(t)
)
, xT(t), cT(t)

]T ∈ Rs+n+nc , t ≥ 0. From Assumption 4.2.1,

‖W (t)‖F ≤ w, t ≥ 0, and ‖Ẇ (t)‖F ≤ ẇ, t ≥ 0, directly follows. From the structure of the term “BΛ
(
ua(t)+

W T(t)σ
(
x(t),c(t)

))
” in (4.53), the adaptive control law is chosen as

ua(t) =−Ŵ T(t)σ
(
x(t),c(t)

)
, t ≥ 0, (4.54)

with Ŵ (t) ∈ R(s+n+nc)×m, t ≥ 0, being an estimate of W (t), t ≥ 0. In what follows, we present a concise

overview of the main results in [1] for completeness.

4.2.2.2 Standard Set-Theoretic Model Reference Adaptive Control Overview

Following the architecture presented in [1], consider the update law for (4.54) in the form

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖ei(t)‖P)σ
(
x(t),c(t)

)
eT

i (t)PB
)
, Ŵ (0) = Ŵ0, t ≥ 0, (4.55)

with the projection norm bound Ŵmax. In addition, γ ∈R+ stands for the learning rate (i.e., adaptation gain),

P ∈ Rn×n
+ stands for the solution to the Lyapunov equation

0 = AT
r P+PAr +R, (4.56)

with R ∈ Rn×n
+ , and ei(t) , x(t)− xri(t), t ≥ 0, stands for the system error. The system error dynamics and

the weight estimation error dynamics can now be respectively written as

ėi(t) = Arei(t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
, ei(0) = ei0, t ≥ 0, (4.57)
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˙̃W (t) = γProjm
(

Ŵ (t),φd(‖ei(t)‖P)σ
(
x(t),c(t)

)
eT

i (t)PB
)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0. (4.58)

Here, W̃ (t), Ŵ (t)−W (t), t ≥ 0, denotes the weight estimation error.

Remark 4.2.1 The update law given by (4.55) for the standard set-theoretic model reference adaptive

control architecture can be derived by considering the following energy function V (ei,W̃ ) = φ(‖ei‖P) +

γ−1tr
[
(W̃Λ1/2)T(W̃Λ1/2)

]
where Dε , {ei(t) : ‖ei(t)‖P < ε} and P ∈ Rn×n

+ is the unique solution of the

Lyapunov equation in (4.56). Note that V (0,0) = 0, V (ei,W̃ )> 0 for (ei,W̃ ) 6= (0,0), and V̇
(
ei(t),W̃ (t)

)
≤

−1
2 αV (ei,W̃ )+ µ, where α , λmin(R)

λmax(P)
, d , 2γ−1w̃ ẇ‖Λ‖2, µ , 1

2 αγ−1w̃2‖Λ‖2 +d, and w̃ = Ŵmax +w. By

applying Lemma 1 of [23, 25], one can now conclude the boundedness of the closed-loop dynamical system

given by (4.57) and (4.58) and the strict performance bound on the system error given by

‖ei(t)‖P < ε, t ≥ 0, (4.59)

under the condition ‖ei(0)‖P < ε .

Remark 4.2.2 The set-theoretic model reference adaptive control architecture concisely overviewed in this

section provides a strict performance bound given by (4.59) on the norm of the entire system error vector. In

particular, eT
i (t)Pei(t)< ε2 equivalently results from this performance bound. If the matrix P is a diagonal

matrix with user-defined pi ∈ R+, i = 1, . . . ,n, coefficients on its diagonals, then one can further write this

performance bound as ∑
n
j=1 p je2

i j(t) = p1e2
i1(t) + · · ·+ pne2

in(t) < ε2; hence, these pi coefficients can be

used as weights in order to adjust the performance bound as desired for enforcing strict guarantees on a

subset of this system error vector, which can capture partial system errors that a control designer specifically

cares. However, unfortunately, since P is obtained from (4.56), it is generally not a diagonal matrix with

user-defined coefficients. This implies that, the standard set-theoretic model reference adaptive control

architecture overviewed above does not readily allow for partially adjustable performance guarantees. The

contribution of this paper is to address this problem (see Section 4.2.3).

Following the discussion given in the above remark, let C be a matrix that defines a subset of the

system states. To this end, define

y(t) , Cx(t), t ≥ 0, (4.60)

yri(t) , Cxri(t), t ≥ 0. (4.61)
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In particular, the next section addresses the problem of driving a feasible user-selected system subset states

given by (4.60) to a close (and user-controllable) neighborhood of their equivalent reference model subset

states given by (4.61) for achieving adjustable strict performance guarantees on partial system errors.

4.2.3 Partially Adjustable Strict Performance Guarantees

The proposed new set-theoretic model reference adaptive control architecture of this paper involves

a two-level constructive design framework, as discussed. To this end, Section 4.2.3.1 introduces an auxiliary

state dynamics and develop the auxiliary system error vector between the states of an uncertain dynamical

system and the states of this auxiliary dynamics, where this allows a control designer to weigh each auxiliary

system error vector elements independently, while enforcing strict performance guarantees on the norm of

this auxiliary system error vector. In Section 4.2.3.2, we then utilize a command governor mechanism in

order to drive a feasible user-selected system subset states to a close (and user-controllable) neighborhood

of their equivalent reference model subset states.

4.2.3.1 Auxiliary State Dynamics

In this subsection, based on the structure of a modified reference system, we introduce an auxiliary

state dynamics. To this end, consider the modified reference dynamics given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, t ≥ 0. (4.62)

In (4.62), xr(t) ∈ Rn, t ≥ 0, denotes the modified reference state vector and c(t) ∈ Rnc , t ≥ 0, denotes the

actual applied command signal given by

c(t), cd(t)+ cg(t), t ≥ 0, (4.63)

where cg(t) ∈Rnc , t ≥ 0, is a performance modification term for the ideal command cd(t), t ≥ 0 (see Section

4.2.3.2).

Now, let the auxiliary state dynamics be given by2

ẋa(t) = Arx(t)+Brc(t)+L
(
x(t)− xa(t)

)
, xa(0) = xa0, t ≥ 0, (4.64)

2Versions of the auxiliary state dynamics given by (4.64) and (4.65) are previously utilized by the authors of [32, 113–116]
for reducing high-frequency oscillations that may occur in adaptive control systems. In this paper, however, the auxiliary state
dynamics given by (4.64) and (4.65) is needed for an entirely different purpose to address the problem stated in Section 4.2.2;
hence, our results are not related to those of [32, 113–116].
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ya(t) = Cxa(t), t ≥ 0. (4.65)

In (4.64) and (4.65), xa(t) ∈ Rn, t ≥ 0, denotes the auxiliary state vector, ya(t) ∈ Rny , t ≥ 0, denotes the

auxiliary output signal, and L = diag[l1, . . . , ln] ∈ Dn×n denotes a design matrix (see Remark 4.2.3). In

addition, we consider the update law for (4.54) as

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖L−1)σ
(
x(t),c(t)

)
eT(t)L−1B

)
, Ŵ (0) = Ŵ0, t ≥ 0. (4.66)

In (4.66), e(t), x(t)−xa(t), t ≥ 0, denotes the auxiliary system error vector, φd(‖e(t)‖L−1)∈R+ denotes an

error dependent learning gain, γ ∈R+ denotes a design scalar, and Ŵmax and−Ŵmax respectively denotes the

maximum and minimum element-wise projection bounds. Now, the auxiliary and weight estimation error

dynamics can be written as

ė(t) = −Le(t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
, e(0) = e0, t ≥ 0, (4.67)

ey(t) = Ce(t), t ≥ 0, (4.68)

˙̃W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖L−1)σ
(
x(t),c(t)

)
eT(t)L−1B

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0, (4.69)

where W̃ (t) , Ŵ (t)−W (t) ∈ R(s+n+nc)×m, t ≥ 0, is the weight estimation error. The following theorem

presents the first and intermediate result of this paper.

Theorem 4.2.1 Consider the uncertain dynamical system given by (4.47) subject to Assumption 4.2.1, the

auxiliary state dynamics given by (4.64) and (4.65), and the feedback control law given by (4.51) along with

the nominal control law (4.52), the adaptive control law (4.54), and the update law (4.66). If ‖e0‖L−1 < ε ,

then the closed-loop dynamical system given by (4.67), (4.68) and (4.69) are bounded, where the bound on

the system error strictly satisfies a-priori given, user-defined worst-case performance

‖e(t)‖L−1 < ε, t ≥ 0. (4.70)

Proof. The boundedness of the closed-loop dynamical system in (4.67), (4.68) and (4.69) and

the given strict performance bound in (4.70) follow by applying Theorem 3.1 of [1] with considering the

Lyapunov function
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V (e,W̃ ) = φ(‖e‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
. (4.71)

Since −L is Hurwitz and symmetric, note that the positive-definite matrix P in (4.71) satisfies the Lyapunov

equation given by

0 = −LTP−PL+R

= −LP−PL+R, (4.72)

with R = 2I. This implies that P = L−1 ∈ Rn×n
+ in (4.72). �

Remark 4.2.3 As a direct consequence of Theorem 4.2.1, each auxiliary system error vector element can

now be independently weighted while enforcing strict performance guarantees on the norm of this error

vector. To this end, one needs to choose the elements of L as L = diag[l1, . . . , ln] ∈ Dn×n with li, i = 1, . . . ,n,

being design scalars. To elucidate this point, note that (4.70) can be written as ∑
n
j=1 l−1

j e2
j(t) = l−1

1 e2
1(t)+

· · ·+ l−1
n e2

n(t) < ε2, t ≥ 0, where l1, . . . , ln coefficients can be utilized as weights in order to adjust the

performance bound as desired on the auxiliary system error vector e(t), t ≥ 0. Note that this adjustable

performance guarantee is an intermediate step toward our overarching aim of driving a feasible user-

selected subset of system states (4.60) to a close (and user-controllable) neighborhood of the equivalent

subset of ideal reference model system states (4.61), which is addressed in the following subsection.

4.2.3.2 Command Governor Design

To drive a feasible user-selected system subset states to a close (and user-controllable) neighborhood

of their equivalent ideal reference model subset states, we design a command governor mechanism in this

subsection. Mathematically speaking, let er(t), xa(t)−xri(t), t ≥ 0, be the error signal between the auxiliary

state vector and the ideal reference state vector. Its resulting dynamics then satisfies

ėr(t) = Arer(t)+(Ar +L)e(t)+Brcg(t), er(0) = xa0− xri0, t ≥ 0, (4.73)

ery(t) = Cer(t), t ≥ 0, (4.74)

with ery(t), ya(t)− yri(t), t ≥ 0.
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Similar to the procedure in, for example [117], in what follows we employ a backstepping approach

to construct the command governor signal cg(t), t ≥ 0, to drive the norm of the output error signal ery(t), t ≥

0, arbitrarily small as desired, and, as a result, a feasible user-selected subset of system states given in (4.60)

enters a close (and user-controllable) neighborhood of the equivalent subset of ideal reference model system

states given in (4.61). For this purpose, we consider (4.73) and (4.74) in the control canonical form with

Ar =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−k1 −k2 −k3 . . . −kn




, ki ∈ R, (4.75)

Br =




0(ρ−1)×m

B


 , B =




bρ1 . . . bρm

...
. . .

...

bn1 . . . bnm



∈ R(n−ρ+1)×m, bi ∈ R, (4.76)

C =

[
1 0 . . . 0

]
. (4.77)

Now, let ef(t) ∈ Rn, t ≥ 0, be a low-pass filter estimate of e(t), t ≥ 0, given by

ėf(t) = Γf [e(t)− ef(t)] , ef(0) = ef0, t ≥ 0, (4.78)

where Γf ∈ Dn×n∩Rn×n
+ is a filter gain matrix. Since ef(t), t ≥ 0, is a low-pass filter estimate of e(t), t ≥ 0,

the matrix Γf is chosen as λmax(Γf)≤ γf,max with γf,max > 0 being a design parameter.

Remark 4.2.4 From Theorem 4.2.1, e(t), t ≥ 0, is a bounded signal and since the filter gain matrix Γf is

positive-definite, it follows from (4.78) that ef(t), t ≥ 0 and ėf(t), t ≥ 0 are bounded.

In order to obtain a recursive procedure using a backstepping control design, as standard, we first

start with the second-order system given by

ėr1(t) = er2(t)+ l1e1(t)+ e2(t), er1(0) = er10, t ≥ 0, (4.79)

ėr2(t) = −k1er1(t)− k2er2(t)− k1e1(t)+(l2− k2)e2(t)+b1cg(t), er2(0) = er20 , t ≥ 0, (4.80)

ery(t) = er1(t), t ≥ 0. (4.81)

79



www.manaraa.com

Specifically, let ε1(t) , Γ0er1(t)+ er2(t)+ l1e1f(t)+ e2f(t), t ≥ 0, and define the command governor signal

as

cg(t) , −b−1
1

[
(Γ1 +Γ0− k2)ε1(t)−

(
Γ

2
0− k2Γ0 + k1

)
er1(t)+(Γ0− k2)

[
l1
(
e1(t)− e1f(t)

)
+ e2(t)

−e2f(t)
]
+ k2(l1e1(t)+ ė1f(t))+ l2e2(t)+ ė2f(t)

]
, t ≥ 0. (4.82)

In (4.82), Γ0 ∈R+ and Γ1 ∈R+ are design parameters. Based on the new state variable ε1(t), t ≥ 0, and the

command governor signal (4.82), (4.79), (4.80), and (4.81) can be rewritten as

ėr1(t) = −Γ0er1(t)+ ε1(t)+ l1
(
e1(t)− e1f(t)

)
+ e2(t)− e2f(t), er1(0) = er10, t ≥ 0, (4.83)

ε̇1(t) = −Γ1ε1(t), ε1(0) = ε10, t ≥ 0, (4.84)

ery(t) = er1(t), t ≥ 0, (4.85)

or, equivalently, in the compact form

ζ̇ (t) = A1ζ (t)+B1q̃1(t), ζ (0) = ζ0, t ≥ 0, (4.86)

ery(t) = C1ζ (t), t ≥ 0, (4.87)

with

A1 =



−Γ0 1

0 −Γ1


 , B1 =




1

0


 , C1 =

[
1 0

]
, (4.88)

where ζ (t) = [er1(t), ε1(t)]T, t ≥ 0, is the aggregated system state and q̃1(t) , l1
(
e1(t)− e1f(t)

)
+ e2(t)−

e2f(t), t ≥ 0, is a bounded signal from Remark 4.2.4.

From [79, 118], consider now the equi-induced signal

�G�(∞,2),(∞,2) , supq̃1∈L∞

�ery�∞,2

�q̃1�∞,2
, (4.89)

that denotes the L1-system norm of (4.86) and (4.87). An upper bound to (4.89) is given by

�G�(∞,2),(∞,2) ≤
1√
α

σ
1/2
max(C1QαCT

1 ), (4.90)
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where α > 0 ensures that A1 +
α

2 I is Hurwitz and Qα ∈R2×2 is the (unique) nonnegative definite Lyapunov

equation solution to

0 = A1Qα +QαAT
1 +αQα +B1BT

1 . (4.91)

Remark 4.2.5 By minimizing the upper bound on the L1-system norm given by (4.90), it follows from (4.89)

that one can suppress the effect of q̃1(t), t ≥ 0, which has the worst-case upper bound satisfying

|q̃1(t)| ≤ (3l3/2
1 +2l1/2

2 )ε, t ≥ 0, (4.92)

on the output error signal ery(t), t ≥ 0. Specifically, to show how the design parameters Γ0 and Γ1 suppress

the effect of this bounded perturbation term on the output error signal ery(t), t ≥ 0, for the illustration

purposes in this remark only we consider q̃1(t), t ≥ 0, as a step input having unity amplitude. As it is shown

in Figure 4.9, one can observe that by increasing Γ , Γ0 = Γ1 from 1 to 10, the output error signal ery(t),

t ≥ 0, decreases. In addition, in order to make the upper bound of the L1-system norm of (4.86) and (4.87)

arbitrarily small, one can increase the design parameter Γ as required. Note that the selection of the unit

step input for q̃1(t), t ≥ 0, in this remark is without loss of generality and in general it can be in the form of

any bounded time-varying function.

Proposition 4.2.1 Consider the uncertain dynamical system given by (4.47) with n = 2, subject to Assump-

tion 4.2.1, the auxiliary state dynamics given by (4.64) and (4.65), and the feedback control law given by
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Figure 4.9: System response of (4.86) and (4.87) to step input of q̃1(t), t ≥ 0 (left), and the upper bound on
the L1-system norm given in (4.90) (right).
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(4.51) along with the nominal control law (4.52), the adaptive control law (4.54), and the update law (4.66).

In addition, consider the error dynamics between the auxiliary state vector and the ideal reference state

vector given in (4.79), (4.80) and (4.81), and let the command governor signal be given by (4.82). Then,

all of the closed-loop dynamical system signals remain bounded, and the system output signal y(t), t ≥ 0,

converges to a close (and user-controllable) neighborhood of the ideal reference system output signal

yri(t), t ≥ 0.

Proof. The auxiliary system error signal e(t), t ≥ 0, is bounded from Theorem 4.2.1. Now, based

on the upper triangular structure of A1 matrix in (4.86), the boundedness of er1(t), t ≥ 0, and ε1(t), t ≥ 0, is

immediate [109]. Hence, from the definition of the signal ε1(t), t ≥ 0, one can conclude the boundedness

of er2(t), t ≥ 0, where from the definition of the signal er(t), t ≥ 0, the auxiliary state xa(t), t ≥ 0, is also

bounded. Now, from the definition of the auxiliary system error signal e(t), t ≥ 0, the system state x(t), t ≥ 0,

is also bounded. Therefore, all of the closed-loop dynamical system signals are bounded.

For the second part of the proof, we analyze the deviation of the system output trajectory in (4.60)

from the output signal of the ideal reference system in (4.61) given by

∣∣y(t)− yri(t)
∣∣ =

∣∣(y(t)− ya(t)
)
+
(
ya(t)− yri(t)

)∣∣=
∣∣ey(t)+ ery(t)

∣∣

≤
∣∣ey(t)

∣∣+
∣∣ery(t)

∣∣, t ≥ 0. (4.93)

Note that, based on Remark 4.2.3 one can write l−1
1 e2

1(t)≤ l−1
1 e2

1(t)+ l−1
2 e2

2(t)< ε2, t ≥ 0, or equivalently,

e2
1(t)< l1ε2, t ≥ 0, which can be expressed as

∣∣ey(t)
∣∣<
√

l1 ε, t ≥ 0. (4.94)

Furthermore, it follows from Remark 4.2.5 that the effect of q̃1(t), t ≥ 0, (with its upper bound in (4.92))

on
∣∣ery(t)

∣∣, t ≥ 0 can be made as small as desired by choosing the design parameters Γ1 and Γ0. It is

now clear from (4.93) that the system output signal y(t), t ≥ 0, converges to a close (and user-controllable)

neighborhood of the ideal reference system output signal yri(t), t ≥ 0, by judicious selection of the user-

defined and design parameters ε , Γ0,Γ1 and l1 which completes the proof. �

Owing to the nature of the backstepping approach, the above analysis can be carried out to design the

command governor signal cg(t), t ≥ 0, for the high-order dynamical systems to guarantee the boundedness

of the auxiliary state signal xa(t), t ≥ 0 and to make the output of the auxiliary dynamics arbitrarily close to
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the output of the reference system by tuning the design parameters. To elucidate this point, we now consider

a third-order system given by

ėr1(t) = er2(t)+ l1e1(t)+ e2(t), er1(0) = er10, t ≥ 0, (4.95)

ėr2(t) = er3(t)+ l2e2(t)+ e3(t), er2(0) = er20, t ≥ 0, (4.96)

ėr3(t) = −k1er1(t)− k2er2(t)− k3er3(t)− k1e1(t)− k2e2(t)+(l3− k3)e3(t)+b1cg(t), er3(0) = er30,

t ≥ 0, (4.97)

ery(t) = er1(t), t ≥ 0. (4.98)

In particular, let

ε1(t) , Γ0er1(t)+ er2(t)+ l1e1f(t)+ e2f(t), t ≥ 0, (4.99)

ε2(t) , (Γ1 +Γ0)ε1(t)−Γ
2
0er1(t)+ er3(t)−Γ0l1e1f(t)−Γ0e2f(t)+ e3f(t), t ≥ 0, (4.100)

and define the command governor signal as

cg(t),

−b−1
1

[(
Γ2 +Γ1 +Γ0− k3

)
ε2(t)−

(
(Γ1 +Γ0)(Γ1− k3)+ k2 +Γ

2
0
)
ε1(t)+

(
Γ

3
0− k3Γ

2
0 + k2Γ0− k1

)
er1(t)

+l1Γ0Γ1
(
e1(t)− e1f(t)

)
+
(
Γ0(Γ1 + l2)+Γ1l2− k2

)(
e2(t)− e2f(t)

)
+
(
Γ0 +Γ1− k3

)(
e3(t)− e3f(t)

)

+k2l1e1f(t)+ k3l2e2f(t)− k1e1(t)+ l3e3(t)+ k3l1ė1f(t)+(k3 + l2)ė2f(t)+ ė3f(t)
]
, t ≥ 0. (4.101)

In (4.101), Γ0 ∈ R+,Γ1 ∈ R+ and Γ2 ∈ R+ are design parameters. Based on the new state variables ε1(t),

ε2(t), t ≥ 0, and the command governor signal (4.101), (4.95), (4.96), (4.97), and (4.98) can be rewritten as

ėr1(t) = −Γ0er1(t)+ ε1(t)+ l1
(
e1(t)− e1f(t)

)
+ e2(t)− e2f(t), er1(0) = er10, t ≥ 0, (4.102)

ε̇1(t) = −Γ1ε1(t)+ ε2(t)+Γ0l1
(
e1(t)− e1f(t)

)
+
(
Γ0 + l2

)(
e2(t)− e2f(t)

)
+ e3(t)− e3f(t)

+l1ė1f(t)+ ė2f(t), ε1(0) = ε10, t ≥ 0, (4.103)

ε̇2(t) = −Γ2ε2(t), ε2(0) = ε20, t ≥ 0, (4.104)

ery(t) = er1(t), t ≥ 0, (4.105)
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or, equivalently, in the compact form

ζ̇ (t) = A2ζ (t)+B2q̃2(t), ζ (0) = ζ0, t ≥ 0, (4.106)

ery(t) = C2ζ (t), t ≥ 0, (4.107)

with

A2 =




−Γ0 1 0

0 −Γ1 1

0 0 −Γ2



, B2 =




l1 1 0 0

l1Γ0 Γ0 + l2 1 1

0 0 0 0



, C2 =

[
1 0 0

]
, (4.108)

where ζ (t) = [er1(t), ε1(t), ε2(t)]T, t ≥ 0 is the aggregated system state and q̃2(t) =
[
e1(t)−e1f(t), e2(t)−

e2f(t), e3(t)− e3f(t), l1Γ1f[e1(t)− e1f(t)]+Γ2f[e2(t)− e2f(t)]
]T
, t ≥ 0, is a bounded signal from Remark

4.2.4. Similar to (4.89), from [79, 118], consider the equi-induced signal

�G�(∞,2),(∞,2) , supq̃2∈L∞

�ery�∞,2

�q̃2�∞,2
, (4.109)

that denotes the L1-system norm of (4.106) and (4.107). An upper bound to (4.109) is given by

�G�(∞,2),(∞,2) ≤
1√
α

σ
1/2
max(C2QαCT

2 ), (4.110)

where α > 0 ensures that A2 +
α

2 I is Hurwitz and Qα ∈R3×3 is the (unique) nonnegative definite Lyapunov

equation solution to

0 = A2Qα +QαAT
2 +αQα +B2BT

2 . (4.111)

Remark 4.2.6 As it is shown in Figure 4.10 and similar to the case in Remark 4.2.5, one can observe that

by increasing Γ , Γ0 = Γ1 = Γ2 from 1 to 10, the output error signal ery(t), t ≥ 0, decreases. In addition,

in order to make the upper bound of the L1-system norm of (4.106) and (4.107) arbitrarily small, one can

increase the design parameter Γ.

Proposition 4.2.2 Consider the uncertain dynamical system given by (4.47) with n = 3, subject to Assump-

tion 4.2.1, the auxiliary state dynamics given by (4.64) and (4.65), and the feedback control law given
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by (4.51) along with the nominal control law (4.52), the adaptive control law (4.54), and the update law

(4.66). In addition, consider the error dynamics between the auxiliary state vector and the ideal reference

state vector given in (4.95), (4.96), (4.97) and (4.98), and let the command governor signal be given by

(4.101). Then, all of the closed-loop dynamical system signals remain bounded, and the system output

signal y(t), t ≥ 0, converges to a close (and user-controllable) neighborhood of the ideal reference system

output signal yri(t), t ≥ 0.

Proof. The auxiliary system error signal e(t), t ≥ 0, is bounded from Theorem 4.2.1. Now, based

on the upper triangular structure of A2 matrix in (4.106), the boundedness of er1(t), t ≥ 0, ε1(t), t ≥ 0, and

ε2(t), t ≥ 0, is immediate [109]. Hence, from the definition of the signals ε1(t), t ≥ 0, and ε2(t), t ≥ 0, one

can conclude the boundedness of er2(t), t ≥ 0, and er3(t), t ≥ 0, where from the definition of the signal er(t),

t ≥ 0, the auxiliary state xa(t), t ≥ 0, is also bounded. Now, from the definition of the auxiliary system error

signal e(t), t ≥ 0, the system state x(t), t ≥ 0, is also bounded. Therefore, all of the closed-loop dynamical

system signals are bounded.

Similar to the proof of Proposition 4.2.1, for the second part of the proof we analyze the deviation

of the system output trajectory in (4.60) from the output signal of the ideal reference system in (4.61) given

by

∣∣y(t)− yri(t)
∣∣ =

∣∣(y(t)− ya(t)
)
+
(
ya(t)− yri(t)

)∣∣=
∣∣ey(t)+ ery(t)

∣∣

≤
∣∣ey(t)

∣∣+
∣∣ery(t)

∣∣, t ≥ 0. (4.112)
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Figure 4.10: System response of (4.106) and (4.107) to step input of the first (top left), the second (top
middle), the third (bottom left), and the fourth (bottom middle) components of q̃2(t), t ≥ 0, and the upper
bound on the L1-system norm given in (4.110) (right).
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Note that, once again based on Remark 4.2.3 one can write l−1
1 e2

1(t) ≤ l−1
1 e2

1(t) + l−1
2 e2

2(t) + l−1
3 e2

3(t) <

ε2, t ≥ 0, or equivalently, e2
1(t)< l1ε2, t ≥ 0, which can be expressed as

∣∣ey(t)
∣∣<
√

l1 ε, t ≥ 0. (4.113)

Furthermore, it is clear based on Remark 4.2.6 that
∣∣ery(t)

∣∣, t ≥ 0, can be made as small as desired by

choosing the design parameters Γ2, Γ1 and Γ0. It now follows from (4.112) that the system output signal

y(t), t ≥ 0, converges to a close (and user-controllable) neighborhood of the ideal reference system output

signal yri(t), t ≥ 0, by judicious selection of the user-defined and design parameters ε , Γ0,Γ1,Γ2 and l1. �

Remark 4.2.7 By repeating the recursive procedure in Propositions 4.2.1 and 4.2.2, (n−1)-times, one can

design the command governor signal cg(t), t ≥ 0, for the general error dynamical systems given in (4.73)

and (4.74) to guarantee the boundedness of the auxiliary state signal xa(t), t ≥ 0 and to tighten the upper

bound on the output error signal in (4.74) by tuning the design parameters Γ0,Γ1, . . .Γn−1.

4.2.4 Illustrative Numerical Examples

In this section, we present two numerical examples to demonstrate the efficacy of the proposed

command governor-based adaptive control architecture.

4.2.4.1 Example 1

Consider the uncertain dynamical system given by

ẋ(t) =




0 3

3 1


x(t)+




0

1


Λ

(
u(t)+δ (t,x(t))

)
, x(0) = 0, t ≥ 0, (4.114)

where x(t) =
[
x1(t), x2(t)

]T is the system state, δ (t,x(t)) represents an uncertainty of the form given in

(4.49) with

W0(t) = [5cos(0.5t), −15, 1]T , σ0(x(t)) = [x1(t), x2(t), 1]T , t ≥ 0, (4.115)

and Λ = 0.75 represents an uncertain control effectiveness matrix. The linear quadratic regulator theory is

used to design the nominal feedback gain matrix as K1 = [8.4, 8.5], where we pick K2 = 5.4.
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For the standard set-theoretic model reference adaptive controller in Section 4.2.2.2, we use the

generalized restricted potential function given by φ(‖ei(t)‖P) = ‖ei(t)‖2
P/
(
ε − ‖ei(t)‖P

)
, set ε = 1, the

projection norm bound imposed on each element of the parameter estimate to Ŵmax = 15, the learning rate to

γ = 20, and we use R= I to calculate P from (4.56) for the resulting Ar matrix. Figure 4.11 shows the closed-

loop dynamical system performance with the standard set-theoretic adaptive controller in Section 4.2.2.2,

where Figure 4.12 shows the norm of the system error trajectories and the evolution of the effective learning

rate. One can see from these figures that the standard set-theoretic adaptive controller is not able to enforce a

user-defined performance bound to a subset of the system states, unless ε is chosen to be sufficiently small.

Yet, as known, this can result in high effective learning rates [1].

Next, we apply the proposed command governor-based set-theoretic adaptive control architecture,

we use L = diag([1,10]), Γ0 = Γ1 = 10 and set the filter gain in (4.78) to Γ f = 0.5. It can be seen in

Figure 4.13 that desired performance is obtained and the first component of the state vector converges to a

close (and user-controllable) neighborhood of the reference state. The evolution of the norm of the auxiliary

system error trajectories and the effective learning rate is depicted in Figure 4.14. Finally, Figure 4.15 shows

the role of the command governor signal to modify the command signal for different values of Γ = Γ0 = Γ1,

where it is clear from Figure 4.16 that a larger value of Γ, leads to a better tracking performance of output

signal of the reference system. 4

4.2.4.2 Example 2

For this second example, we consider a third-order uncertain dynamical system given by

ẋ(t) =




0 1 0

0 0 1

2 3 1




x(t)+




0

0

1




Λ

(
u(t)+δ (t,x(t))

)
, x(0) = 0, t ≥ 0, (4.116)

where x(t) =
[
x1(t) x2(t) x3(t)

]T is the system state, δ (t,x(t)) represents an uncertainty of the form given in

(4.49) withW0(t) = 10 [sin(0.25t), −0.25, 0.5, 0.5]T , t ≥ 0, σ0(x(t)) = [x1(t), x2(t), x1(t)x2(t), x3(t)]
T , t ≥

0, and Λ = 0.75 represents an uncertain control effectiveness matrix. The linear quadratic regulator theory

is used to design the nominal feedback gain matrix as K1 = [5.7, 9.9, 6.1], where we pick K2 = 3.7.

87



www.manaraa.com

For the standard set-theoretic model reference adaptive controller in Section 4.2.2.2, we use the

generalized restricted potential function given by φ(‖ei(t)‖P) = ‖ei(t)‖2
P/
(
ε − ‖ei(t)‖P

)
, set ε = 1, the
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Figure 4.11: Command following performance with the standard set-theoretic model reference adaptive
controller in Section 4.2.2.2.
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Figure 4.12: Norm of the system error trajectories and the evolution of the effective learning rate γφd(·) with
the standard set-theoretic model reference adaptive controller in Section 4.2.2.2.
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Figure 4.13: Command following performance with the proposed command governor-based set-theoretic
model reference adaptive controller in Section 4.2.3.
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Figure 4.14: Norm of the auxiliary system error trajectories and the evolution of the effective learning
rate γφd(·) with the proposed command governor-based set-theoretic model reference adaptive controller in
Section 4.2.3.
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Figure 4.15: The effect of increasing the design parameter Γ = Γ0 = Γ1 from 0.05 to 10 (blue to red) on
the modified command signal with the proposed command governor-based set-theoretic model reference
adaptive controller in Section 4.2.3.

Figure 4.16: The effect of increasing the design parameter Γ = Γ0 = Γ1 from 0.05 to 10 (blue to red) on
the system performance with the proposed command governor-based set-theoretic model reference adaptive
controller in Section 4.2.3.
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Figure 4.17: Command following performance with the standard set-theoretic model reference adaptive
controller in Section 4.2.2.2.

projection norm bound imposed on each element of the parameter estimate to Ŵmax = 15, the learning

rate to γ = 20, and we use R = I to calculate P from (4.56) for the resulting Ar matrix. Figure 4.17 shows

the closed-loop dynamical system performance with the standard set-theoretic adaptive controller in Section

4.2.2.2 where Figure 4.18 shows the norm of the system error trajectories and the evolution of the effective

learning rate. One can see from these figures that the the standard set-theoretic adaptive controller is not

able to enforce a user-defined performance bound to a subset of the system states.

Next, we apply the proposed command governor-based set-theoretic adaptive control architecture,

we use L = diag([1,10,10]), Γ0 = Γ1 = 5 and set the filter gain in (4.78) to Γ f = 0.5. It can be seen

in Figure 4.19 that desired performance is obtained and the first component of the state vector converges

to a close (and user-controllable) neighborhood of the reference state. The evolution of the norm of the

auxiliary system error trajectories and the effective learning rate is depicted in Figure 4.20. Finally, Figure

4.21 shows the role of the command governor signal to modify the command signal for different values of

Γ = Γ0 = Γ1 = Γ2, where it is clear from Figure 4.22 that a larger value of Γ, leads to a better tracking

performance of output signal of the reference system. 4
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4.2.5 Conclusion

In this paper, we developed a new two-level set-theoretic model reference adaptive control architec-

ture that has the ability to enforce an a-priori given, user-defined performance bound on the selected subset of

dynamical system trajectories, entitled as partially adjustable performance guarantees. Specifically, we first

utilized an auxiliary state dynamics that allows a control designer to weigh each auxiliary system error vector

elements independently, while enforcing strict performance guarantees on the norm of this auxiliary system

error vector. A command governor mechanism was then designed through a constructive backstepping

procedure in order to drive a feasible user-selected subset of system states to a close (and user-controllable)

neighborhood of the corresponding reference model states. This resulted in adjustable strict performance

guarantees on a subset of system errors trajectories. In addition to the presented theoretical results, two

illustrative numerical examples further demonstrated the efficacy of our contribution.
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Figure 4.18: Norm of the system error trajectories and the evolution of the effective learning rate γφd(·) with
the standard set-theoretic model reference adaptive controller in Section 4.2.2.2.
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Figure 4.19: Command following performance with the proposed command governor-based set-theoretic
model reference adaptive controller in Section 4.2.3.
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Figure 4.20: Norm of the auxiliary system error trajectories and the evolution of the effective learning
rate γφd(·) with the proposed command governor-based set-theoretic model reference adaptive controller in
Section 4.2.3.
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Figure 4.21: The effect of increasing the design parameter Γ = Γ0 = Γ1 = Γ2 from 0.05 to 10 (blue to red)
on the modified command signal with the proposed command governor-based set-theoretic model reference
adaptive controller in Section 4.2.3.

Figure 4.22: The effect of increasing the design parameter Γ= Γ0 = Γ1 = Γ2 from 0.05 to 10 (blue to red) on
the system performance with the proposed command governor-based set-theoretic model reference adaptive
controller in Section 4.2.3.
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4.3 On Set-Theoretic Model Reference Adaptive Control of Uncertain Dynamical Systems Subject
to Actuator Dynamics3

In applications where the bandwidth of the actuator dynamics is not sufficiently high, the stability

of model reference adaptive controllers can be degraded drastically as it is well known. To this end, one of

the effective approaches for tackling the challenge of limited actuator bandwidth is the hedging method in

which using a “modified” reference model, the adaptation becomes “excluded” from the actuator dynamics.

With this approach, however, the performance bounds between the uncertain dynamical system trajectories

and the “ideal” reference model trajectories can be conservative and depend on the bounds on the system

uncertainties; therefore, no “practical” performance guarantees exist.

To address this challenge, we generalize a recently developed set-theoretic model reference adap-

tive control architecture, which has the capability to achieve “practical” (i.e., user-defined) performance

guarantees, for uncertain dynamical systems subject to actuator dynamics. Specifically, we first show

that the proposed architecture keeps the performance bounds between the uncertain dynamical system

trajectories and the “modified” reference model trajectories within an a-priori, user-defined bound. We next

show that the error bounds between the “ideal” reference model trajectories and the uncertain dynamical

system trajectories is characterized by this user-defined bound as well as the actuator bandwidth limit, and

hence, is “computable” using a given set of adaptive control design parameters. Finally, as a byproduct, our

illustrative numerical example shows that the time rate of change of the actual control signal (i.e., the output

of the actuator dynamics) becomes less in magnitude as compared with the the set-theoretic model reference

adaptive control case without actuator dynamics.

4.3.1 Introduction

In applications where the bandwidth of the actuator dynamics is not sufficiently high, the stability of

model reference adaptive controllers can be degraded drastically as it is well known. To this end, one of the

effective approaches for tackling the challenge of limited actuator bandwidth is the hedging method [37] in

which using a “modified” reference model (i.e., the “ideal” reference model modified by the “hedge” signal),

the adaptation becomes “excluded” from the actuator dynamics (we refer to [37] as well as [38, 39] for

details). While [37] introduce this method to the model reference adaptive control literature around 2000s,

the authors of [40, 41] recently show not only generalizations of this method but also the sufficient condition

3This section is previously published in [119]. Permission is included in Appendix H.
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predicated on linear matrix inequalities (LMIs) such that the modified reference model trajectories, and

hence, the overall closed-loop dynamical system, become stable in the presence of actuator dynamics once

this sufficient condition holds. Yet, since the contributions in [40, 41] adopt a “standard” model reference

adaptive control framework, the performance bounds between the uncertain dynamical system trajectories

and the “ideal” reference model trajectories can be conservative and depend on the bounds on the system

uncertainties; therefore, no “practical” performance guarantees exist (e.g., see Theorem 1.4.1 of [41], where

the performance bound includes unknown parameters; thus, is not readily a-priori “computable” at the pre-

design stage).

To address this challenge, we generalize a recently developed set-theoretic model reference adaptive

control architecture [1] (see also [21, 93, 101–104, 108]), which has the capability to achieve “practical”

performance guarantees, for uncertain dynamical systems subject to actuator dynamics using tools and

methods from [40, 41]. Specifically, we first show that the proposed set-theoretic model reference adaptive

control architecture keeps the performance bounds between the uncertain dynamical system trajectories and

the “modified” reference model trajectories within an a-priori, user-defined bound (unlike the results in

[40, 41]). We next show that the error bounds between the “ideal“ reference model trajectories and the

uncertain dynamical system trajectories is characterized by this user-defined bound as well as the actuator

bandwidth limit, and hence, is a-priori “computable” using a given set of adaptive control design parameters.

Finally, as a byproduct, our illustrative numerical example shows that the time rate of change of the actual

control signal (i.e., the output of the actuator dynamics) becomes less in magnitude as compared with the

the set-theoretic model reference adaptive control case without actuator dynamics.

The contents of this paper are as follows. In Section 4.3.2, we overview necessary notation and

definitions for the main results of this paper. In Sections 4.3.3, we present the problem formulation and

an overview on the set-theoretic model reference adaptive control architecture considered in this paper.

In Section 4.3.4, we present the proposed set-theoretic model reference adaptive control architecture for

uncertain dynamical systems subject to actuator dynamics, where the convergence of the (“ideal” and

“modified”) reference models are presented in Section 4.3.5. The efficacy of our theoretical results are also

demonstrated via an illustrative numerical example in Section 4.3.6. Finally, conclusions are summarized

in Section 4.3.7. Once again, note that the contribution of this paper builds on the results in [1, 40, 41] and

can be viewed either as the generalization of the results in [1] to uncertain dynamical systems subject to
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actuator dynamics using tools and methods from [40, 41], or as the generalization of the results in [40, 41]

to set-theoretic model reference adaptive control based on the theory developed in [1].

4.3.2 Notation and Definitions

The notation used throughout this paper is standard and similar to, for example, [1]. For self-

containedness, note that R denotes the set of real numbers, Rn denotes the set of n×1 real column vectors,

Rn×m denotes the set of n×m real matrices, R+ (respectively, R+) denotes the set of positive (respectively,

nonnegative-definite) real numbers, Rn×n
+ (respectively, Rn×n

+ ) denotes the set of n× n positive-definite

(respectively, nonnegative-definite) real matrices, Dn×n denotes the set of n×n real matrices with diagonal

scalar entries, 0n×n denotes the n×n zero matrix, and “,” denotes equality by definition. We, in addition,

write (·)T for the transpose operator, (·)−1 for the inverse operator, tr(·) for the trace operator, and ‖ · ‖2 for

the Euclidean norm. We also write ‖x‖A,
√

xTAx for the weighted Euclidean norm of x∈Rn with the matrix

A ∈ Rn×n
+ , ‖A‖2 ,

√
λmax(ATA) for the induced 2-norm of the matrix A ∈ Rn×m, λmin(A) (resp., λmax(A))

for the minimum (resp., maximum) eigenvalue of the matrix A ∈ Rn×n, and x (resp., x) for the lower bound

(resp., upper bound) of a bounded signal x(t)∈Rn, t ≥ 0, that is, x≤‖x(t)‖2, t ≥ 0 (resp., ‖x(t)‖2≤ x, t ≥ 0).

We next define the projection operator. For this purpose, let Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}

be a convex hypercube in Rn, where (θ min
i , θ max

i ) represent the minimum and maximum bounds for the ith

component of the n-dimensional parameter vector θ . Additionally, for a sufficiently small positive constant

ν , a second hypercube is defined by Ων =
{

θ ∈ Rn : (θ min
i +ν ≤ θi ≤ θ max

i −ν)i=1,2,··· ,n
}

, where Ων ⊂Ω.

Then, the projection operator Proj : Rn×Rn→ Rn is defined componentwise by

Proj(θ ,y),





(
θ max

i −θi
ν

)
yi, if θi > θ max

i −ν

and yi > 0
(

θi−θ min
i

ν

)
yi, if θi < θ min

i +ν

and yi < 0

yi, otherwise

(4.117)

where y ∈ Rn [30]. It follows from (4.117) that (θ −θ ∗)T (Proj(θ ,y)− y) ≤ 0 holds (see [30, 80] for

details). This definition can be further generalized to matrices as Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )),

. . . ,Proj(colm(Θ), colm(Y ))
)
, where Θ ∈ Rn×m, Y ∈ Rn×m and coli(·) denotes ith column operator. In this
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case, for a given matrix Θ∗, it follows from (θ −θ ∗)T (Proj(θ ,y)− y)≤ 0 that tr
[
(Θ−Θ∗)T(Projm(Θ,Y )−

Y )
]
= ∑

m
i=1
[
coli(Θ−Θ∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))

]
≤ 0.

We finally define φ(‖z‖H), φ : R→ R, to be a “generalized restricted potential function” (general-

ized barrier Lyapunov function) on the set Dε ,
{
‖z‖H : ‖z‖H ∈ [0,ε)

}
with ε ∈ R+ being a user-defined

constant, if the following statements hold [1]:

i) If ‖z‖H = 0, then φ(‖z‖H) = 0.

ii) If ‖z‖H ∈ Dε and ‖z‖H 6= 0, then φ(‖z‖H)> 0.

iii) If ‖z‖H→ ε , then φ(‖z‖H)→ ∞.

iv) φ(‖z‖H) is continuously differentiable on Dε .

v) If ‖z‖H ∈ Dε , then φd(‖z‖H)> 0, where

φd(‖z‖H),
dφ(‖z‖H)

d‖z‖2
H

. (4.118)

vi) If ‖z‖H ∈ Dε , then

2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0. (4.119)

As noted in [1], this definition generalizes the definition of the “restricted potential functions” (barrier Lya-

punov functions) (e.g., see [21–26, 107]) and a candidate generalized restricted potential function satisfying

the conditions given above has the form φ(‖z‖H) = ‖z‖2
H/(ε−‖z‖H), ‖z‖H ∈ Dε .

4.3.3 Set-Theoretic Model Reference Adaptive Control: A Concise Overview

We now present the problem formulation and overview the set-theoretic model reference adaptive

control architecture proposed in [1]. For this purpose, consider the uncertain dynamical system given by

ẋ(t) = Ax(t)+B
(
u(t)+δ (t,x(t))

)
, x(0) = x0, t ≥ 0, (4.120)

where x(t) ∈ Rn, t ≥ 0, is the available (i.e., measurable) state vector, u(t) ∈ Rm, t ≥ 0, is the control input,

A ∈ Rn×n is a known system matrix, B ∈ Rn×m is a known input matrix, δ : R+×Rn → Rm is a system

uncertainty, and the pair (A,B) is controllable. We now introduce a linear and time-varying version of the

standard “structured” system uncertainty parameterization [28–30].
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Assumption 4.3.1 The system uncertainty given by (4.120) is parameterized as

δ (t,x(t)) = W T(t)x(t), t ≥ 0, (4.121)

where W (t) ∈ Rn×m, t ≥ 0, is a bounded unknown weight matrix (i.e., ‖W (t)‖2 ≤ w, t ≥ 0) with a bounded

time rate of change (i.e., ‖Ẇ (t)‖2 ≤ ẇ, t ≥ 0).

Next, let desired command following characteristics be captured by the “ideal” reference model

given by

ẋri(t) = Arxri(t)+Brc(t), xri(0) = xri0, t ≥ 0, (4.122)

where c(t) ∈ Rnc , t ≥ 0, is a given bounded piecewise continuous command (i.e. ‖c(t)‖2 ≤ c, t ≥ 0), and

xri(t) ∈ Rn, t ≥ 0, is the reference state vector. Now, consider the feedback control law given by

u(t) = un(t)+ua(t), t ≥ 0, (4.123)

where un(t) ∈ Rm, t ≥ 0, and ua(t) ∈ Rm, t ≥ 0, are the nominal and adaptive control laws, respectively.

Furthermore, let the nominal control law be

un(t) =−K1x(t)+K2c(t), t ≥ 0, (4.124)

such that Ar , A−BK1, K1 ∈ Rm×n, is Hurwitz and Br , BK2,K2 ∈ Rm×nc . Using (4.123) and (4.124) in

(4.120) yields

ẋ(t) = Arx(t)+Brc(t)+B
[
ua(t)+W T(t)x(t)

]
, x(0) = x0, t ≥ 0. (4.125)

Considering (4.125), let the adaptive control law be

ua(t) =−Ŵ T(t)x(t), t ≥ 0, (4.126)

where Ŵ (t) ∈ Rn×m, t ≥ 0, is an estimate of W (t), t ≥ 0.
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Now, following the architecture presented in [1], consider the update law for (4.126) as

˙̂W (t) = γiProjm
(

Ŵ (t),φd(‖ei(t)‖P)x(t)eT
i (t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (4.127)

with Ŵmax being the projection norm bound and ‖Ŵ (t)‖2 ≤ ŵ, t ≥ 0. In (4.127), additionally, γi ∈ R+ is the

learning rate (i.e., adaptation gain), P ∈ Rn×n
+ is a solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (4.128)

with R∈Rn×n
+ , and ei(t), x(t)−xri(t), t ≥ 0, being the system error. Note that φd(‖ei(t)‖P), t ≥ 0 in (4.127)

can be viewed as an error dependent learning rate.

We now state the key result presented in Theorem 3.1 of [1]. For this purpose, consider the system

error dynamics and the weight estimation error dynamics respectively as

ėi(t) = Arei(t)−BW̃ T(t)x(t), ei(0) = ei0, t ≥ 0, (4.129)

˙̃W (t) = γiProjm
(

Ŵ (t),φd(‖ei(t)‖P)x(t)eT
i (t)PB

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0, (4.130)

where W̃ (t) , Ŵ (t)−W (t), t ≥ 0, is the weight estimation error. Using the energy function V (ei,W̃ ) =

φ(‖ei‖P) + γ
−1
i tr

[
W̃ TW̃

]
, where Dε , {‖ei(t)‖P : ‖ei(t)‖P < ε} with P ∈ Rn×n

+ being a solution of the

Lyapunov equation in (4.128) for R ∈ Rn×n
+ , we calculate V̇

(
ei(t),W̃ (t)

)
≤ −1

2 αV (ei(t),W̃ (t)) + µ with

α , λmin(R)
λmax(P)

, d , 2γ
−1
i w̃ ẇ, and µ , 1

2 αγ
−1
i w̃2 +d. To this end, we conclude the boundedness of the closed-

loop dynamical system given by (4.129) and (4.130) as well as the strict performance bound on the system

error given by ‖ei(t)‖P < ε , t ≥ 0, where we refer to the proof of Theorem 3.1 in [1] for details.

4.3.4 Generalizations to Uncertain Dynamical Systems Subject to Actuator Dynamics

In this section, we generalize the set-theoretic adaptive control architecture overviewed in Section

4.3.3 to the uncertain dynamical systems subject to actuator dynamics. On this generalization, we consider

the uncertain dynamical system given by [40]

ẋ(t) = Ax(t)+B
(
v(t)+δ (t,x(t))

)
, x(0) = x0, t ≥ 0, (4.131)

where v(t) ∈ Rm, t ≥ 0, is the actuator output satisfying the “actuator dynamics”
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ẋc(t) = −Mxc(t)+u(t), xc(0) = xc0, t ≥ 0, (4.132)

v(t) = Mxc(t), v(0) = v0, t ≥ 0, (4.133)

where xc(t) ∈Rm, t ≥ 0, is the actuator state, M ∈Rm×m
+ ∩Dm×m with diagonal entries λi,i > 0, i = 1, . . . ,m,

represents the actuator bandwidth of each control channel, and u(t) ∈ Rm, t ≥ 0, is the control input signal.

From a practical view, the above representation can be thought as the one given by (4.120), where each

control signal is “filtered through a first-order filter” before they enter to uncertain dynamical system.

We next utilize the hedging approach [37]. To this end, we rewrite (4.131) as

ẋ(t) = Ax(t)+B
(
u(t)+W T(t)x(t)

)
+B
(
v(t)−u(t)

)
, x(0) = x0, t ≥ 0. (4.134)

Introducing (4.123), (4.124), and (4.126) in (4.134) yields

ẋ(t) = Arx(t)+Brc(t)−BW̃ T(t)x(t)+B
(
v(t)−u(t)

)
, x(0) = x0, t ≥ 0. (4.135)

Applying the “hedging philosophy” here (we refer to [37] as well as [38–41] for details), the “modified”

reference system is now given by

ẋr(t) = Arxr(t)+Brc(t)+B
(
v(t)−u(t)

)
, xr(0) = xr0, t ≥ 0. (4.136)

In (4.136), the added term to the “ideal” reference model (4.122) (i.e., “B
(
v(t)−u(t)

)
”) is called the “hedge

signal.” To implement the adaptive control law given by (4.126), we consider the update law given by

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)x(t)eT(t)PB
)
, Ŵ (0) = Ŵ0, t ≥ 0. (4.137)

While (4.137) looks similar to (4.127), it utilizes the error signal given by e(t) , x(t)− xr(t), t ≥ 0, which

represents the difference between the uncertain dynamical system trajectories and the “modified” reference

model trajectories (unlike the error signal ei(t) used in (4.127)).

For the main result of this section, we note the following:

i) It follows from the above formulation that one can now write the system error dynamics and the

weight estimation error dynamics respectively as
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ė(t) = Are(t)−BW̃ T(t)x(t), e(0) = e0, t ≥ 0, (4.138)

˙̃W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)x(t)eT(t)PB
)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0. (4.139)

ii) It follows from Lemma 3.1 of [40] or Lemma 1.3.1 of [41] that there exists a set κ ,
{

λ : λ ≤ λi,i, i=

1, . . . ,m
} ⋃ {

ω : Ŵmax,i+( j−1)n ≤ ω, i = 1, . . . ,n, j = 1, . . . ,m
}

such that if (λ ,ω) ∈ κ , then

A(Ŵ (t),M) =




A+BŴ T(t) BM

−K1−Ŵ T(t) −M


 , t ≥ 0, (4.140)

is quadratically stable. That is, similar to the results in [40, 41], the existence of the set κ is necessary

for the feasibility of the considered adaptive control problem. To see this, let ζ (t) , [xT
r (t),x

T
c (t)]

T,

t ≥ 0, which yields ζ̇ (t) =A(Ŵ (t),M)ζ (t)+ω(e(t),Ŵ (t)), t ≥ 0, with

ω(e(t),Ŵ (t)) =




B
(
Ŵ T(t)+K1

)
e(t)

−
(
Ŵ T(t)+K1

)
e(t)+K2c(t)


 , t ≥ 0. (4.141)

Now, if the system error dynamics and the weight estimation error dynamics respectively given by

(4.136) and (4.139) have bounded trajectories, then it follows that ω(e(t),Ŵ (t)), t ≥ 0, in (4.141)

is bounded. Thus, by quadratic stability of A(Ŵ (t),M), t ≥ 0, on κ , ζ (t), t ≥ 0, is bounded. As

a consequence, all closed-loop dynamical system trajectories (including x(t)) are bounded provided

that (4.136) and (4.139) have bounded trajectories.

We are now ready to state the main result of this section.

Theorem 4.3.1 Consider the uncertain dynamical system given by (4.131) subject to Assumption 4.3.1 and

actuator dynamics (4.132) and (4.133), the modified reference model given by (4.136), the feedback control

law given by (4.123) with (4.124), (4.126), and (4.137). In addition, assume ‖e0‖P < ε and (λ ,ω)∈ κ hold.

Then, all closed-loop system trajectories are bounded, where the bound on the system error strictly satisfies

a-priori given, user-defined worst-case performance

‖e(t)‖P < ε, t ≥ 0. (4.142)
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Proof. The first step of the proof is similar to the discussion given in the last paragraph of Section

4.3.3. Specifically, consider the energy function given by V (e,W̃ ) = φ(‖e‖P)+ γ−1tr
[
W̃ TW̃

]
, where Dε ,

{‖e(t)‖P : ‖e(t)‖P < ε} with P ∈ Rn×n
+ being a solution of the Lyapunov equation in (4.128) for R ∈ Rn×n

+ .

Using this energy function, one can calculate V̇
(
e(t),W̃ (t)

)
≤ −1

2 αV (e(t),W̃ (t))+ µ , where α , λmin(R)
λmax(P)

,

d , 2γ
−1
i w̃ ẇ, and µ , 1

2 αγ
−1
i w̃2 +d. In this calculation, we adopt similar steps as in the proof of Theorem

3.1 in [1]; thus, we refer interested readers to [1] for details. Above, we conclude the boundedness of the

pair (e(t),W̃ (t)), t ≥ 0, for (4.138) and (4.139) as well as the result in (4.142) once ‖e0‖P < ε holds.

Note that since W̃ (t) = Ŵ (t)−W (t), t ≥ 0, and W (t), t ≥ 0, is assumed to be bounded, this conclu-

sion implies that Ŵ (t), t ≥ 0, is bounded. Considering e(t) = x(t)− xr(t), t ≥ 0, however, boundedness of

e(t), t ≥ 0, does not directly imply the boundedness of x(t), t ≥ 0, here, since xr(t), t ≥ 0, can be unbounded

in general. Thus, we now establish the boundedness of xr(t), t ≥ 0, using (λ ,ω)∈ κ . In particular, following

the discussion given before Theorem 4.3.1, (λ ,ω) ∈ κ implies that (4.140) is quadratically stable; hence,

ζ (t), t ≥ 0, is bounded containing the pair (xr(t),xc(t)), t ≥ 0 (we refer interested readers to the proofs of,

for example, Theorem 3.1 in [40] or Theorem 1.3.1 in [41] for additional details). The proof is now complete

since this discussion gives the boundedness of all closed-loop system trajectories. �

From Theorem 4.3.1, if ‖e0‖P < ε and (λ ,ω) ∈ κ hold, then all closed-loop system trajectories are

bounded and the user-defined worst-case performance bound given by (4.142) is guaranteed. Specifically,

the assumption on ‖e0‖P < ε can be trivially satisfied by a judicious initialization of the “modified” reference

model given by (4.136). For example, considering xr0 = x0, one has ‖e0‖P = ‖x0− xr0‖P = ‖x0− x0‖P =

0 < ε that holds for any ε chosen by the control user. To satisfy the assumption on (λ ,ω) ∈ κ , which

implies the quadratic stability ofA(Ŵ (t),M), t ≥ 0, given by (4.140), one can consider the following convex

optimization problem from Remark 3.3 of [40] or Section 1.3 of [41]: If

Ai1,...,il =




A+BW T
i1,...,il BM

−K1−W T
i1,...,il −M


 , (4.143)

satisfies the matrix inequality

AT
i1,...,ilP+PAi1,...,il < 0, P = PT > 0, (4.144)
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for all permutations of W i1,...,il ∈ Rn×m, then (4.140) is quadratically stable. Above, W i1,...,il denotes

W i1,...,il =




(−1)i1Ŵmax,1 . . . (−1)i1+(m−1)nŴmax,1+(m−1)n

(−1)i2Ŵmax,2 . . . (−1)i2+(m−1)nŴmax,2+(m−1)n
...

. . .
...

(−1)inŴmax,n . . . (−1)imnŴmax,mn



, (4.145)

with il ∈ {1,2} , l ∈ {1, . . . ,2mn}, where it essentially represents the corners of the hypercube that represents

the maximum variation of Ŵ (t), t ≥ 0.

4.3.5 Distance Between of Uncertain Dynamical System and Ideal Reference Model Trajectories

In the previous section, we showed that using the set-theoretic adaptive control architecture, one can

achieve the prescribed system performance guarantees for the error signal between the uncertain dynamical

system in (4.120) and the modified reference system in (4.136). In this section, we analyze the distance

between the uncertain dynamical system in (4.120) and the actual, “ideal” reference model in (4.122). For

this purpose, let er(t), xr(t)−xri(t), t ≥ 0, be the error between the modified and the ideal reference systems.

Therefore, one can write

‖x(t)− xri(t)‖L∞
= ‖e(t)+ er(t)‖L∞

≤ ‖e(t)‖L∞
+‖er(t)‖L∞

, t ≥ 0. (4.146)

Now for the sake of the next result, let [41]

P ,




P PB

BTP BTPB+ρI


 , (4.147)

where P ∈ Rn×n
+ is a solution of the Lyapunov equation given by (4.128) with R ∈ Rn×n

+ and ρ ∈ R+. Note

that the actuator bandwidth matrix M0 ∈Rm×m
+ ∩Dm×m can be related to the actual actuator bandwidth matrix

M ∈ Rm×m
+ ∩Dm×m as M , ψM0, where ψ ∈ R+ and ψ ≥ 1.

Theorem 4.3.2 Based on the conditions given in Theorem 4.3.1, the error signal between the system state

and ideal reference system state can be characterized by the user-defined parameter ε as well as ψ , which
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is related with the actuator bandwidth, and is given by

‖x(t)− xri(t)‖L∞
≤ ερ

√
λmax(P)

λmin(P)λmin(P)

√
5η +(ψ−1)β

η(η +(ψ−1)β )2

(
(‖B‖2 +1)(ŵ+‖K1‖2)

+

√
λmin(P)‖K2‖2c

ε

)
+

ε√
λmin(P)

, η ∈ R+, t ≥ 0. (4.148)

Proof. It follows from Theorem 1.4.1 of [41] that

‖er(t)‖L∞
< ρω

∗
√

λmax(P)
λmin(P)

√
5η +(ψ−1)β

η(η +(ψ−1)β )2 , t ≥ 0, (4.149)

with β = 2ρλmin(M0), η ∈ R+ satisfying

AT(Ŵ (t),M0)P+PA(Ŵ (t),M0)≤−ηIn+m, t ≥ 0, (4.150)

and ω∗ being the upper bound on ω(·) in (4.141) given by

‖ω(·)‖2 ≤
∥∥B
(
Ŵ T(t)+K1

)
e(t)
∥∥

2 +
∥∥−
(
Ŵ T(t)+K1

)
e(t)+K2c(t)

∥∥
2

≤ ε√
λmin(P)

(∥∥B
(
Ŵ T(t)+K1

)∥∥
2 +
∥∥(Ŵ T(t)+K1

)∥∥
2

)
+‖K2c(t)‖2

≤ ε√
λmin(P)

(‖B‖2 +1)(ŵ+‖K1‖2)+‖K2‖2c, t ≥ 0. (4.151)

Furthermore, it follows from Theorem 4.3.1 that

‖e(t)‖∞ ≤ ‖e(t)‖2 <
ε√

λmin(P)
, t ≥ 0. (4.152)

Introducing (4.149), (4.151) and (4.152) in (4.146) yields

‖x(t)− xri(t)‖L∞
≤ ε√

λmin(P)

(
ρ

(
(‖B‖2 +1)(ŵ+‖K1‖2)+

√
λmin(P)‖K2‖2c

ε

)√
λmax(P)
λmin(P)

·
√

5η +(ψ−1)β
η(η +(ψ−1)β )2 +1

)
, t ≥ 0, (4.153)

which simplifies to (4.148). �
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Figure 4.23: The upper bound of the error signal between the uncertain dynamical system state and the ideal
reference system state given by Theorem 4.3.2.

The bound given by (4.148) captures the distance between the “ideal“ reference model trajectories

and the uncertain dynamical system trajectories, which is characterized by the user-defined bound ε as well

as ψ related with the actuator bandwidth. From a practical standpoint, note that this bound is “computable”

using a given set of adaptive control design parameters.

Remark 4.3.1 To elucidate the effect of the controller design parameters on (4.148), let A = 0.2, B = 1,

w= 1, 0.9< ŵ< 1.1, K1 = 0.4, K2 = 1, Ar =−0.2, Br = 1, which yields to M0 = 2.2, and η = 0.1879. Figure

4.23 shows the effect of ε ∈ [0.05,2] and ψ ∈ [2,10] on the ultimate bounds given by (4.148). Specifically,

as expected, increasing ψ and decreasing ε yields smaller ultimate bound for ‖x(t)− xri(t)‖L∞
, t ≥ 0.

4.3.6 Illustrative Numerical Example

Consider the uncertain dynamical system given by

ẋ(t) =




0 1

0 0


x(t)+




0

1



(

Λv(t)+δ (t,x(t))
)
, x(0) = 0, t ≥ 0, (4.154)

where x(t) =
[
x1(t) x2(t)

]T, t ≥ 0, with x1(t), t ≥ 0, representing the angle (in rad) and x2(t), t ≥ 0,

representing the angular rate (in rad/sec). In (4.154), δ (t,x(t)), t ≥ 0, represents an uncertainty of the form
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δ (t,x(t)) = w1(t)x1(t)+w2x2(t), t ≥ 0, (4.155)

with w1(t) = sin(0.25t)−1, t ≥ 0, and w2 = 1, and Λ = 0.75 represents an uncertain control effectiveness

matrix. We use linear quadratic regulator design to choose K1 = [2.89,3.02] and K2 = 2.89 in (4.124), which

yields to the reference model given by

ẋr(t) =




0 1

−2.89 −3.02


xr(t)+




0

2.89


c(t) xr(0) = 0 t ≥ 0. (4.156)

First, for the case where there is no actuator dynamics, we apply the set-theoretic model reference

adaptive control architecture in Section 4.3.3. The bounds on the uncertainty are set element-wise using

the rectangular projection operator such that −3 < ŵ1 < 2, and 0 < ŵ2 < 2, and we use R = I to calculate

P from (4.128) for the resulting Ar matrix. Figures 4.24(a) to 4.24(f) show the system performance with

set-theoretic adaptive control architecture with ε = 0.05 when there is no actuator dynamics. The time

derivative (generated by the diff function of Matlab) of the control signal u(t), t ≥ 0, is shown in Figure

4.25.

Next, we consider a single-channel actuator dynamics given in (4.132) and (4.133) such that M =

λ ,λ ∈ R+. Using the bounds on ŵ1(t), t ≥ 0, and ŵ2(t), t ≥ 0, in LMI analysis, the minimum allowable

actuator bandwidth is calculated as λmin = 3.3. Figures 4.26(a) to 4.26(f) show the system performance

with set-theoretic adaptive control architecture with ε = 0.05 in presence of actuator dynamics with λ = 10

where they clearly illustrate the efficacy of the proposed architecture in this paper. The time derivative of

the control signal u(t), t ≥ 0, and the actuator output v(t), t ≥ 0, are shown in Figure 4.28 where it is clear

that compared to the previous case, the maximum rate of change in control input has decreased.

When the actuator bandwidth gets close to the calculated minimum allowable actuator bandwidth

value λmin = 3.3, the system starts to exhibit some oscillations. However, the system response is still

acceptable as it can be seen from Figures 4.27(a) to 4.27(f). The time derivative of the control signal

u(t), t ≥ 0, and the actuator output v(t), t ≥ 0, are also shown in Figure 4.29.

Remark 4.3.2 As a byproduct, our illustrative numerical example shows that the time rate of change of the

(actual) control signal (i.e., the output of the actuator dynamics) becomes less in magnitude as compared

with the the set-theoretic model reference adaptive control case without actuator dynamics.
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Figure 4.24: System performance with set-theoretic adaptive controller in Section 4.3.3.

108



www.manaraa.com

0 5 10 15 20 25 30 35 40 45 50

t (sec)

-40

-30

-20

-10

0

10

20

30

40

u̇
(t
)

(d
eg
/s
)

Figure 4.25: Time derivative of the control signal.

4.3.7 Conclusion

In this paper, we generalized a recently developed set-theoretic model reference adaptive control

architecture, which has the capability to achieve “practical” (i.e., user-defined) performance guarantees, for

uncertain dynamical systems subject to actuator dynamics. Specifically, we first showed that the proposed

architecture keeps the performance bounds between the uncertain dynamical system trajectories and the

“modified” reference model trajectories within an a-priori, user-defined bound. We next showed that the

error bounds between the “ideal“ reference model trajectories and the uncertain dynamical system trajec-

tories is characterized by this user-defined bound as well as the actuator bandwidth limit, and hence, is

“computable” using a given set of adaptive control design parameters. Our numerical example illustrated

the efficacy of the proposed set-theoretic model reference adaptive controller.

4.4 Guaranteed Model Reference Adaptive Control Performance in the Presence of Actuator
Failures4

For achieving strict closed-loop system performance guarantees in the presence of exogenous distur-

bances and system uncertainties, a new model reference adaptive control framework was recently proposed.

Specifically, this framework was predicated on a set-theoretic adaptive controller construction using gener-

alized restricted potential functions, where its key feature was to keep the distance between the trajectories

4This section is previously published in [101]. Permission is included in Appendix H.

109



www.manaraa.com

0 5 10 15 20 25 30 35 40 45 50

-5

0

5

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

(a) Command following performance.

0 5 10 15 20 25 30 35 40 45 50

t (sec)

-8

-6

-4

-2

0

2

4

6

8

10

u
(t
),

v
(t
)

(d
eg
)

u(t)

v(t)

(b) Control signal.

0 5 10 15 20 25 30 35 40 45 50

t (sec)

-2

-1.5

-1

-0.5

0

0.5

1

Ŵ
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Figure 4.26: System performance with set-theoretic adaptive controller in presence of actuator dynamics
with λ = 10.
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Figure 4.27: System performance with set-theoretic adaptive controller in presence of actuator dynamics
with λ = λmin = 3.3
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Figure 4.28: Time derivative of the actuator output signal and the control signal with λ = 10.
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Figure 4.29: Time derivative of the actuator output signal and the control signal with λ = 3.3.

of an uncertain dynamical system and a given reference model to be less than a-priori, user-defined worst-

case closed-loop system performance bound. The contribution of this paper is to generalize this framework

to address disturbance rejection and system uncertainty suppression in the presence of actuator failures. A

system-theoretical analysis is provided to show the strict closed-loop system performance guarantees of the

proposed architecture to effectively handle actuator failures and its efficacy is demonstrated in an illustrative

numerical example.
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4.4.1 Introduction

One of the fundamental needs for resilient control architectures is to achieve a level of desired

closed-loop system performance in the presence of adverse system conditions resulting from exogenous

disturbances, imperfect system modeling, degraded modes of operation, and changes in system dynamics.

Although fixed-gain robust control approaches [120–123] are helpful to cope with such adverse system

conditions, they generally require the knowledge of system uncertainty bounds [124]. Characterization

of these bounds is not a trivial control engineering task since it requires extensive and costly verification

procedures and tests. On the other hand, adaptive control approaches [28–30, 125] have the capability to

deal with adverse system conditions, require less modeling information than do fixed-gain robust control

approaches, and reduce system development costs. These facts make adaptive control approaches important

to achieve system resiliency.

Most adaptive control approaches adopt a model reference approach [126, 127]. Specifically, model

reference adaptive control schemes have three major components; a reference model, an update law, and a

controller. The reference model captures a desired closed-loop system behavior, which is compared with the

behavior of an uncertain dynamical system. This comparison results in a system (tracking) error that drives

the update law. The controller then adapts feedback gains to minimize this error using the information

received from the update law. In practice, the behavior of an uncertain dynamical system subject to an

adaptive control approach can be far different than the behavior of the reference model [31, 87, 128]

especially during the transient time and in the presence of large system uncertainties.

Although there are a few approaches to address this phenomenon [79, 129, 130], their closed-loop

system performance bounds not only are conservative but also depend on uncertain system parameters.

Therefore, these approaches may not be practical for safety-critical resilient system applications, where strict

and user-defined closed-loop system performance is required; for example, to preserve operation within safe

flight envelope in aerospace applications. To this end, a new model reference adaptive control framework

was recently proposed by the authors of Ref. [1] for achieving strict closed-loop system performance

guarantees in the presence of exogenous disturbances and system uncertainties. Specifically, this framework

was predicated on a set-theoretic adaptive controller construction using generalized restricted potential

functions, where its key feature was to keep the distance between the trajectories of an uncertain dynamical
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system and a given reference model to be less than a-priori, user-defined worst-case closed-loop system

performance bound.

In addition to the presence of exogenous disturbances and system uncertainties, actuator failures

significantly contribute to fatal accidents [42–44]. In particular, a common type of actuator failures is when

one or more control surfaces suddenly become inaccessible and remain at some unknown value. If special

considerations do not exist in the feedback control architecture, then the closed-loop system performance

can become undesirable or even unstable. Although additional control surfaces may be provided in practice

to have actuator redundancy and to preserve system controllability in the presence of one or more actuator

failures, proper considerations are still needed to compensate the adverse effect of such failures in the closed-

loop system performance. From an adaptive control standpoint, the authors of Refs. [45–52] (see also their

references) proposed approaches to deal with actuator failures, where only the results in Ref. [52] established

strict guarantees on the closed-loop system performance by utilizing a backstepping procedure and under

the assumption that a desired trajectory and its derivatives are available and all bounded.

In this paper, we generalize the set-theoretic model reference adaptive control framework of Ref.

[1] to address disturbance rejection and system uncertainty suppression in the presence of actuator failures,

where the actuators can fail based on a common failure model in which they can be stuck at some unknown

values at some unknown time, and hence, the actuator failure structure is unknown in terms of time,

pattern, and value. In addition to utilizing methods from our previous work in Ref. [1], we also use

methods from Ref. [49] and our contribution can be equivalently viewed as a generalization of the results

in Ref. [49] to achieve strict closed-loop system performance guarantees in the presence of finite number of

actuator failures. A system-theoretical analysis and an illustrative numerical example are further provided to

demonstrate the efficacy of the proposed set-theoretic model reference adaptive control framework to handle

actuator failures.

The notation used throughout this paper is fairly standard. Specifically, R denotes the set of real

numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set of n×m real matrices,

R+ (respectively, R+) denotes the set of positive (respectively, nonnegative-definite) real numbers, Rn×n
+

(respectively, Rn×n
+ ) denotes the set of n× n positive-definite (respectively, nonnegative-definite) real ma-

trices, Sn×n denotes the set of n× n symmetric real matrices, Dn×n denotes the set of n× n real matrices

with diagonal scalar entries, 0n×n denotes the n×n zero matrix, and “,” denotes equality by definition. In

addition, we write (·)T for the transpose operator, (·)−1 for the inverse operator, det(·) for the determinant
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operator, ‖ · ‖2 for the Euclidean norm, and ‖ · ‖∞ for the infinity norm. Furthermore, we write λmin(A)

(resp., λmax(A)) for the minimum (resp., maximum) eigenvalue of the Hermitian matrix A, tr(·) for the trace

operator, x (resp., x) for the lower bound (resp., upper bound) of a bounded signal x(t) ∈ Rn, t ≥ 0, that is,

x≤ ‖x(t)‖2, t ≥ 0 (resp., ‖x(t)‖2 ≤ x, t ≥ 0).

4.4.2 Set-Theoretic Model Reference Adaptive Control Overview

In this section, we briefly overview the standard set-theoretic model reference adaptive control

architecture of Ref. [1] (in the absence of actuator failures). We begin with the following necessary

definitions.

Definition 4.4.1 Let ψ : Rn −→ R given by ψ(θ), (εθ+1)θ Tθ−θ 2
max

εθ θ 2
max

, be a continuously differentiable convex

function, where θmax ∈R is a projection norm bound imposed on θ ∈Rn and εθ > 0 is a projection tolerance

bound. Then, the projection operator Proj : Rn×Rn→ Rn is defined by

Proj(θ ,y) ,





y, if ψ(θ)< 0,

y, if ψ(θ)≥ 0 and ψ ′(θ)y≤ 0,

y− ψ ′T(θ)ψ ′(θ)y
ψ ′(θ)ψ ′T(θ) ψ(θ), if ψ(θ)≥ 0 and ψ ′(θ)y > 0,

(4.157)

where y ∈ Rn and ψ ′(θ), ∂ψ(θ)
∂θ

.

It follows from Definition 4.4.1 that

(θ −θ
∗)T
[
Proj(θ ,y)− y

]
≤ 0, (4.158)

holds [30, 80]. The definition of the projection operator can be generalized to matrices as

Projm(Θ,Y ) = (Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))), (4.159)

where Θ ∈ Rn×m,Y ∈ Rn×m, and coli(·) denotes i th column operator. In this case, for a given matrix Θ∗, it

follows from (4.158) that

tr
[
(Θ−Θ

∗)T[Projm(Θ,Y )−Y
]]

=
m

∑
i=1

[
coli(Θ−Θ

∗)T
[
Proj(coli(Θ),coli(Y ))− coli(Y )

]]
≤ 0. (4.160)
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Definition 4.4.2 Let ‖z‖H =
√

zTHz be a weighted Euclidean norm, where z ∈ Rp is a real column vector

and H ∈Rp×p
+ . We define φ(‖z‖H), φ : R→R, to be a generalized restricted potential function (generalized

barrier Lyapunov function) on the set

Dε , {‖z‖H : ‖z‖H ∈ [0,ε)}, (4.161)

with ε ∈ R+ being a-priori, user-defined constant, if the following statements hold:

i) If ‖z‖H = 0, then φ(‖z‖H) = 0.

ii) If ‖z‖H ∈ Dε and ‖z‖H 6= 0, then φ(‖z‖H)> 0.

iii) If ‖z‖H→ ε , then φ(‖z‖H)→ ∞.

iv) φ(‖z‖H) is continuously differentiable on Dε .

v) If ‖z‖H ∈ Dε , then φd(‖z‖H)> 0, where

φd(‖z‖H),
dφ(‖z‖H)

d‖z‖2
H

. (4.162)

vi) If ‖z‖H ∈ Dε , then

2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0. (4.163)

Remark 4.4.1 A candidate generalized restricted potential function satisfying the conditions given in Def-

inition 4.4.2 has the form [1] φ(‖z‖H) = ‖z‖2
H/
(
ε − ‖z‖H

)
, ‖z‖H ∈ Dε , which has the partial deriva-

tive φd(‖z‖H) =
(
ε − 1

2‖z‖H
)
/
(
ε−‖z‖H

)2
> 0, ‖z‖H ∈ Dε , with respect to ‖z‖2

H, and 2φd(‖z‖H)‖z‖2
H−

φ(‖z‖H) = ε‖z‖2
H/
(
ε−‖z‖H

)2
> 0, ‖z‖H ∈ Dε . It should be also noted that Definition 4.4.2 can be viewed

as a generalized version of the restricted potential function (barrier Lyapunov function) definitions used by

the authors of Refs. [21–26].

Based on Definitions 4.4.1 and 4.4.2, we now briefly state the key results of the set-theoretic model

reference adaptive control architecture of Ref. [1]. Specifically, consider the uncertain dynamical system
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given by

ẋ(t) = Ax(t)+BΛ
(
u(t)+δ (t,x(t))

)
, x(0) = x0, t ≥ 0, (4.164)

where x(t) ∈ Rn, t ≥ 0, is the measurable state vector, u(t) ∈ Rm, t ≥ 0, is the control input, A ∈ Rn×n is

a known system matrix, B ∈ Rn×m is a known input matrix, δ : R+×Rn → Rm is a system uncertainty,

Λ ∈ Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix, and the pair (A,B) is controllable. The

following system uncertainty parameterization is used for the main results of Ref. [1].

Assumption 4.4.1 The system uncertainty in (4.164) is parameterized as

δ (t,x(t)) = W T
s (t)σs(x(t)), x(t) ∈ Rn (4.165)

where Ws(t) ∈Rs×m, t ≥ 0, is a bounded unknown weight matrix (i.e., ‖Ws(t)‖2 ≤ ws, t ≥ 0) with a bounded

time rate of change (i.e., ‖Ẇs(t)‖2 ≤ ẇs, t ≥ 0), and σ : Rn→ Rs is a known basis function.

Now, consider the feedback control law given by

u(t) = un(t)+ua(t), t ≥ 0, (4.166)

where un(t) ∈ Rm, t ≥ 0, and ua(t) ∈ Rm, t ≥ 0, are the nominal and adaptive control, respectively. Further-

more, let the nominal control law be

un(t) =−K1x(t)+K2c(t), t ≥ 0, (4.167)

where c(t)∈Rnc is a bounded reference command, K1 ∈Rm×n is the nominal feedback gain, and K2 ∈Rm×nc

is the nominal feedforward gain, such that Ar , A−BK1 is Hurwitz and Br , BK2.

Next, consider the reference model capturing a desired closed-loop system behavior given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, t ≥ 0, (4.168)

where xr(t) ∈ Rn is the reference model state vector, Ar ∈ Rn×n is the desired Hurwitz system matrix, and

Br ∈ Rn×nc is the command input matrix. Using (4.164), (4.165), (4.166), (4.167) and (4.168), the system
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error dynamics are given by

ė(t) = Are(t)+BΛ
((

Λ
−1− Im×m

)(
K1x(t)−K2c(t)

)
+ua(t)+W T

s (t)σs(x(t))
)
, e(0) = e0,

t ≥ 0, (4.169)

where e(t), x(t)− xr(t), t ≥ 0, is the system (tracking) error. One can rewrite (4.169) as

ė(t) = Are(t)+BΛ
(
W T

0 (t)σ0(x(t))+ua(t)
)
, e(0) = e0, t ≥ 0, (4.170)

where W0(t) ,
[
W T

s (t), (Λ
−1− Im×m)K1, −(Λ−1− Im×m)K2

]T ∈ R(s+n+nc)×m, t ≥ 0, is an unknown ag-

gregated weight matrix and σ0
(
x(t),c(t)

)
,
[
σT
(
x(t)
)
, xT(t), cT(t)

]T ∈ Rs+n+nc , t ≥ 0, is a known basis

function.

Finally, let the adaptive control law be given by

ua(t) =−Ŵ T
0 (t)σ0

(
x(t)
)
, t ≥ 0, (4.171)

where Ŵ0(t) ∈ R(s+n+nc)×m, t ≥ 0, is the estimate of W0(t), t ≥ 0, satisfying the set-theoretic update law

˙̂W0(t) = γProjm
(

Ŵ0(t),φd(‖e(t)‖P)σ0
(
x(t)
)
eT(t)PB

)
, Ŵ0(0) = Ŵ00, t ≥ 0, (4.172)

with Ŵmax being the projection norm bound, γ ∈ R+ is the learning rate (i.e., adaptation gain), and P ∈Rn×n
+

is a solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (4.173)

with R ∈ Rn×n
+ , and φd(‖e(t)‖P) is an error dependent learning gain.

Remark 4.4.2 Using (4.170), (4.171), and (4.172) the system error dynamics and the weight estimation

error dynamics are given by

ė(t) = Are(t)−BΛW̃ T
0 (t)σ0

(
x(t)
)
, e(0) = e0, t ≥ 0, (4.174)

˙̃W0(t) = γProjm
(
Ŵ0(t),φd(‖e(t)‖P)σ0

(
x(t)
)
eT(t)PB

)
−Ẇ0(t), W̃0(0) = W̃00, t ≥ 0, (4.175)

118



www.manaraa.com

where W̃0(t), Ŵ0(t)−W0(t)∈R(s+n+nc)×m, t ≥ 0, is the weight estimation error and e0, x0−xr0. Note that

‖W0(t)‖2 ≤ w0, t ≥ 0, and ‖Ẇ0(t)‖2 ≤ ẇ0, t ≥ 0, automatically holds. Now, by considering the Lyapunov

function

V (e,W̃0) = φ(‖e‖P)+ γ
−1tr

[
(W̃0Λ

1/2)T(W̃0Λ
1/2)
]
, (4.176)

one can calculate its derivative along the closed-loop system trajectories (4.174) and (4.175) as

V̇
(
e(t),W̃0(t)

)
≤−1

2
αV (e,W̃0)+µ, (4.177)

where α , λmin(R)
λmax(P)

and µ , γ−1‖Λ‖2w̃0(
1
2 αw̃0 + ẇ0). Following the results in Ref. [1], the boundedness of

the closed-loop dynamical system given by (4.174) and (4.175) as well as the strict performance bound on

the system error given by ‖e(t)‖P < ε is immediate.

Remark 4.4.3 The set-theoretic model reference adaptive control architecture overviewed in this section

assumes that all control surfaces are accessible at all time. However, in practice, one or more control

surfaces can get stuck at some unknown values at some unknown time. In the next section, we generalize

this approach to the presence of actuator failures.

4.4.3 Adaptive Control with Strict Closed-Loop System Performance Guarantees in the Presence of
Actuator Failures

In this section, we generalize the results of Section 4.4.2 to address disturbance rejection and system

uncertainty suppression in the presence of finite number actuator failures. Specifically, we consider the

actuator failure model in which the actuators can get stuck at some unknown values at some unknown time.

This can be mathematically represented as

u j(t) = u j, t ≥ t j, j = 1, . . . ,m, (4.178)

where the constants, u j, and the time instants of the actuator failures, t j, are unknown [131]. In addition,

we assume if the system parameters and the actuator failure were known, then the remaining control

surfaces were able to achieve the desired system performance after up to m− 1 actuator failures. Note

that this assumption is standard for addressing the actuator failures problem, which is actually an existence
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assumption for a nominal solution [132]. In other words, we assume that there are p < m actuator failures

and they only happen at Ti, i = 1, . . . , p. This implies that the actuator failure pattern is fixed on (Ti,Ti+1), i =

0,1, . . . , p with T0 = 0.

Next, consider the uncertain dynamical system given by

ẋ(t) = Ax(t)+BΛ
(
u(t)+δ (t,x(t))

)
+Bξi, x(0) = x0, t ≥ 0, (4.179)

where x(t) ∈ Rn, t ≥ 0, is the measurable state vector, u(t) ∈ Rm, t ≥ 0, is the control input, A ∈ Rn×n

is a known system matrix, B ∈ Rn×m is a known input matrix, δ : R+×Rn→ Rm is a system uncertainty,

Λ∈Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix, and the pair (A,B) is controllable. In (4.179),

ξi ∈ Rm represents an unknown vector corresponding to the constant value of the failed actuators over the

interval (Ti,Ti+1), i = 0,1, . . . , p, (i.e., u j). We now make the following standard assumption for the actuator

failures problem (see, for example, Ref. [49]).

Assumption 4.4.2 On (Ti,Ti+1), i = 0,1, . . . , p, there exist matrices K∗1i ∈ Rm×n and K∗2i ∈ Rm×nc and bias

vector ξ ∗i ∈ Rm such that

A+BΛK∗1i = Ar, (4.180)

BΛK∗2i = Br, (4.181)

B(Λξ
∗
i +ξi) = 0. (4.182)

As we mentioned in the first paragraph of this section, note that Assumption 4.4.2 provides the

existence of a nominal solution in case of actuator failures. Now, using (4.165), (4.168), and (4.180) to

(4.182) in (4.179), one can write

ė(t) = Are(t)+BΛ
(
u(t)−K∗1ix(t)−K∗2ic(t)−ξ

∗
i +W T

s (t)σs(x(t))
)
, e(0) = e0, t ≥ 0, (4.183)

or equivalently

ė(t) = Are(t)+BΛ
(
u(t)+W T

i (t)σ(x(t),c(t))
)
, e(0) = e0, t ≥ 0, (4.184)

with Wi(t) = [−K∗1i, −K∗2i, −ξ ∗i , W T
s (t)]

T and σ(x(t),c(t)) = [xT(t), cT(t), 1, σT
s (x(t))]

T.
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Considering (4.184), let the feedback control law be given by

u(t) =−Ŵ T
i (t)σ(x(t),c(t)), t ≥ 0, (4.185)

where Ŵi(t) ∈ R(s+n+nc+1)×m, t ≥ 0, is the estimate of Wi(t), t ≥ 0, satisfying the update law

˙̂Wi(t) = γProjm
(

Ŵi(t),φd(‖e(t)‖P)σ(x(t),c(t))eT(t)PB
)
, Ŵi(0) = Ŵ0i, t ≥ 0, (4.186)

with Ŵmax being the projection norm bound. In (4.186), γ ∈ R+ is the learning rate, and P ∈ Rn×n
+ is a

solution of the Lyapunov equation in (4.173). Now, one can write

ė(t) = Are(t)−BΛW̃ T
i (t)σ(x(t),c(t)), e(0) = e0, t ≥ 0, (4.187)

˙̃Wi(t) = γProjm
(

Ŵi(t),φd(‖e(t)‖P)σ(x(t),c(t))eT(t)PB
)
−Ẇi(t), W̃i(0) = W̃0i, t ≥ 0, (4.188)

where W̃i(t) , Ŵi(t)−Wi(t) ∈ R(s+n+nc+1)×m, t ≥ 0, is the weight estimation error. Note that ‖Wi(t)‖2 ≤

wi, t ≥ 0, and ‖Ẇi(t)‖2 ≤ ẇi, t ≥ 0, automatically holds as a direct consequence of Assumptions 4.4.1 and

4.4.2. The next theorem presents the main result of this paper.

Theorem 4.4.1 Consider the uncertain dynamical system given by (4.179) subject to Assumption 4.4.1 and

a finite number of actuator failures that occur at Ti, i = 1, . . . , p, based on the failure model in (4.178) and

Assumption 4.4.2, the reference model given by (4.168), and the feedback control law given by (4.185)

along with the update law (4.186). If ‖e0‖P < ε , then the closed-loop dynamical system given by (4.187)

and (4.188) are bounded in presence of exogenous disturbances, system uncertainties, and actuator failures,

where the bound on the system error strictly satisfies a-priori given, user-defined worst-case performance

bound

‖e(t)‖P < ε, t ≥ 0. (4.189)

Proof. The first part of the proof follows from the results in Ref. [1]. To give readers a sketch for

the first part, consider the energy function Vi :De×R(n+nc+s+1)×m→ R+ on (Ti,Ti+1), i = 0,1, . . . , p, given

by

Vi(e,W̃iΛ
1/2) = φ(‖e‖P)+ γ

−1tr(W̃iΛ
1/2)T(W̃iΛ

1/2), (4.190)
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where De , {e(t) : ‖e(t)‖P < ε}, and P ∈ Rn×n
+ is a solution of the Lyapunov equation in (4.173) with

R ∈Rn×n
+ . Following the steps given in Ref. [1], the time derivative of (4.190) along the closed-loop system

trajectories (4.187) and (4.188) can be computed as

V̇i
(
e(t),W̃i(t)Λ1/2) ≤ −1

2
αVi(e,W̃iΛ

1/2)+µi, (4.191)

where µi , 1
2 αγ−1w̃2

i ‖Λ‖2 + di, di , 2γ−1w̃i ẇi‖Λ‖2, and α , λmin(R)
λmax(P)

. Now, based on the structure of

(4.191), it follows similar to Refs. [1], [23], and [25] that the closed-loop signals e(t) and W̃i(t)Λ1/2 are

bounded and the strict performance bound on the system error given by (4.189) over interval (Ti,Ti+1), i =

1, . . . , p, hold.

For the second part of the proof, note that there are finite number of actuator failures and the closed-

loop dynamical system given by (4.187) and (4.188) is bounded and satisfies (4.189) for every time interval

(Ti,Ti+1), i = 1, . . . , p. Thus, it follows from the continuity of the system error trajectories for all t ≥ 0

including t = Ti, i = 1, . . . , p, that the system error is contained inside the set Dε for all t ≥ 0 (see Figure

4.30 for a two-dimensional representation of the continuity of the system error). �

Figure 4.30: Two-dimensional representation of the continuity of the system error inside the set Dε .

Remark 4.4.4 The results of this section extend the results presented in the previous work of the authors in

Ref. [1] (see Section 4.4.2 for an overview) by considering that the control surfaces may not be accessible

all the time due to the presence of actuator failures. As mentioned earlier, the proposed framework of this

section can be equivalently viewed as a generalization of the results in Ref. [49] to achieve strict closed-

loop system performance guarantees. Specifically, in Theorem 4.4.1, we show that the proposed set-theoretic
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model reference adaptive control framework has the capability to keep the closed-loop system trajectories

within a-priori, user-defined compact set by compensating the adverse effect of unknown actuator failures

in terms of time, pattern, and value as well as in the presence of exogenous disturbances and system

uncertainties.

4.4.4 Illustrative Numerical Example

In this section, we present an illustrative numerical example to demonstrate the efficacy of the

proposed set-theoretic model reference adaptive control architecture in presence of loss of control. For this

purpose, consider the uncertain dynamical system given by [45]

ẋ(t) = Ax(t)+BΛ

(
u(t)+W T

s (t)σs(x(t))
)
, x(0) = x0, t ≥ 0, (4.192)

with

A =




0 1 0

0 0 1

−1 −2 −2



, B =




0 0 0

0 0 0

1 2 3



. (4.193)

In this numerical example, we choose

Ws(t) =




0.2+0.1sin(t) 0.3 0.1

0.1 0.2+0.2sin(t) 0.1

0.2 0.2 0.2+0.3sin(t)



, (4.194)

for the unknown weight matrix, Λ = 0.75I for the unknown control effectiveness matrix before any actuator

failures, and σs(x(t)) = [x1(t), x1(t)x2(t), x2
3(t)]

T for the basis function. In addition, we set the nominal

controller matrices to

K1 =




1 1 −1

0 −1 1

1 0 0



, K2 =




1

0

0



. (4.195)
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For this numerical example, we select the failure pattern parameters in (4.178) as u2 =−1 at t2 = 10

sec and u3 = 2 at t3 = 5 sec. In other words, this selection means that the second actuator fails at t = 10

sec, third actuator fails at t = 5 sec, and actuator 1 does not fail, which is the case in order to satisfy the

existence of a nominal solution stated in Assumption 4.4.2. For the proposed set-theoretic model reference

adaptive control architecture in Theorem 4.4.1, we use the generalized restricted potential function given in

Remark 4.4.1 with ε = 1 to strictly guarantee ‖x(t)−xr(t)‖P < 1, t ≥ 0. Finally, we set the projection norm

bound imposed on the parameter estimate to 10 and use R = 5I to calculate P from (4.173) for the resulting

Ar matrix.

Figures 4.31 and 4.32 show the closed-loop dynamical system performance with the nominal con-

troller only. One can see from Figure 4.33 that the nominal controller is incapable of keeping the system

error trajectory within the compact set Dε . Next, we apply the proposed set-theoretic adaptive controller

with γ = 5 in Figures 4.34 and 4.35, where it can be seen that a desired, user-defined closed-loop system

performance is achieved. Figure 4.36 clearly shows that this controller strictly guarantees ‖x(t)− xr(t)‖P <

1.
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Figure 4.31: System performance with the nominal controller only.
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Figure 4.32: Control histories with the nominal controller only.
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Figure 4.33: Norm of the system error trajectories and the user-defined worst-case performance bound ε

with the nominal controller only.
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Figure 4.34: System performance with the proposed set-theoretic model reference adaptive controller in
Theorem 4.4.1.
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Figure 4.35: Control histories with the proposed set-theoretic model reference adaptive controller in
Theorem 4.4.1.
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Figure 4.36: Norm of the system error trajectories, the user-defined worst-case performance bound ε , and
the evolution of the effective learning rate γφd(·) with the proposed set-theoretic model reference adaptive
controller in Theorem 4.4.1.

4.4.5 Conclusion

A challenge in the design of model reference adaptive controllers is not only to achieve a level of

desired system performance in the presence of exogenous disturbances and system uncertainties but also

to preserve system stability and robustness against actuator failures. Motivated from this standpoint, we

proposed a set-theoretic model reference adaptive control architecture in the presence of unknown actuator

failures in terms of time, pattern, and value. Specifically, the key feature of the proposed approach was to

keep the distance between the trajectories of an uncertain dynamical system and a given reference model

to be less than a-priori, user-defined worst-case closed-loop system performance bound in the presence of

finite number of actuator failures. A system-theoretical analysis and an illustrative numerical example were

further provided to demonstrate the efficacy of the proposed approach.
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CHAPTER 5: APPLICATIONS OF THE SET-THEORETIC MODEL REFERENCE ADAPTIVE

CONTROL

This chapter presents application-oriented extensions of the set-theoretic model reference adaptive

control architecture proposed in Chapters 2 and 4. Specifically, Section 5.1 presents an application of this

control architecture on a generic transport model developed by NASA, where in Section 5.2 the set-theoretic

model reference adaptive control with constant and time-varying performance bounds are validated on an

aerospace testbed, which is configured as a dual-rotor helicopter. Section 5.3 incorporates a dead-zone effect

on the set-theoretic model reference adaptive control, and finally Section 5.4 studies an application of set-

theoretic model reference adaptive control for human-in-the-loop physical systems to enhance the overall

system stability.

5.1 Set-Theoretic Model Reference Adaptive Control of a Generic Transport Model1

This paper illustrates an application of a recently developed set-theoretic model reference adaptive

control architecture on a generic transport model developed by NASA. The set-theoretic model reference

adaptive control allows the system error bound between the state of an uncertain dynamical system and the

state of a given reference model to be less than a-priori, user-defined worst-case performance bound. Thus, it

has the capability to enforce strict performance guarantees to the adaptively controlled uncertain dynamical

systems. Specifically, after designing set-theoretic adaptive controllers for both longitudinal and lateral-

directional dynamics here, the efficacy of this architecture is illustrated on the NASA generic transport

model.

5.1.1 Introduction

Model reference adaptive control algorithms are effective system-theoretic tools to suppress the

effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modeling,

1This section is previously published in [105]. Permission is included in Appendix H.
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degraded modes of operation, and changes in system dynamics. Yet, one of their challenges is the inability

to achieve a-priori, user-defined performance guarantees. Motivated from this standpoint, a new technique

entitled set-theoretic model reference adaptive control architecture is proposed in a recent set of papers

by the authors [1, 21, 93, 101–104, 108, 111]. Specifically, [1, 21] respectively present this new control

methodology for dynamical systems subject to time-invariant and time-varying structured uncertainties.

The key feature of set-theoretic model reference adaptive control architecture is to allow the weighted

Euclidean norm of the system error vector, which represents the error between the state vector of an uncertain

dynamical system and the state vector of a reference model, to be less than a-priori, user-defined constant

performance bound. This framework is then generalized to the unstructured system uncertainties in [93, 102]

and also the extension of this architecture for guaranteeing performance in the presence of actuator failures

is presented in [101]. In addition, [108] generalizes these results to the case when a-priori, user-defined

performance bound is time-varying. This framework is also recently employed for decentralized control

of large-scale modular systems in [103, 104]. Finally, the partial constraint problem using set-theoretic

adaptive control architecture is studied in [111] and in [110] componentwise performance guarantees are

developed.

Building on the results of [1], this paper illustrates an application of the set-theoretic model ref-

erence adaptive control architecture on a generic transport model developed by NASA. Specifically, after

designing set-theoretic adaptive controllers for both longitudinal and lateral-directional dynamics here, the

efficacy of this architecture is illustrated on the NASA generic transport model (GTM). The organization

of the rest of this paper is as follows. Section 5.1.2 summarizes the architecture and properties of the set-

theoretic model reference adaptive control architecture. Section 5.1.3 describes the nominal and adaptive

control designs for the longitudinal and lateral-directional dynamics of the generic transport model devel-

oped by NASA, where in Section 5.1.4 the illustrative simulation results are presented. Conclusions are

finally drawn in Section 5.1.5.

The notation used in this paper is fairly standard as similar to [1]. For self-containedness, N denotes

the set of natural numbers, R denotes the set of real numbers, Rn denotes the set of n× 1 real column

vectors, Rn×m denotes the set of n×m real matrices, R+ (respectively, R+) denotes the set of positive

(respectively, nonnegative-definite) real numbers, Rn×n
+ (respectively, Rn×n

+ ) denotes the set of n×n positive-

definite (respectively, nonnegative-definite) real matrices, Dn×n denotes the set of n× n real matrices with

diagonal scalar entries, 0n×n denotes the n× n zero matrix, and “,” denotes equality by definition. In
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addition, we write (·)T for the transpose operator, (·)−1 for the inverse operator, det(·) for the determinant

operator, ‖ · ‖F for the Frobenius norm, and ‖ · ‖2 for the Euclidean norm. Furthermore, we write ‖x‖A ,
√

xTAx for the weighted Euclidean norm of x ∈ Rn with the matrix A ∈ Rn×n
+ , ‖A‖2 ,

√
λmax(ATA) for

the induced 2-norm of the matrix A ∈ Rn×m, λmin(A) (resp., λmax(A)) for the minimum (resp., maximum)

eigenvalue of the matrix A ∈ Rn×n, tr(·) for the trace operator, and x (resp., x) for the lower bound (resp.,

upper bound) of a bounded signal x(t) ∈ Rn, that is, x≤ ‖x(t)‖2 (resp., ‖x(t)‖2 ≤ x).

5.1.2 The Set-Theoretic Adaptive Control Architecture

5.1.2.1 Necessary Definitions

We first introduce the definition of the projection operator from [30].

Definition 5.1.1 Let Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}
, be a convex hypercube in Rn, where

(θ min
i , θ max

i ) represent the minimum and maximum bounds for the ith component of the n-dimensional

parameter vector θ . Additionally, for a sufficiently small positive constant ν , define the second hypercube

as Ων =
{

θ ∈ Rn : (θ min
i +ν ≤ θi ≤ θ max

i −ν)i=1,2,··· ,n
}
, where Ων ⊂Ω. With y ∈ Rn, projection operator

Proj : Rn ×Rn → Rn is then defined componentwise by Proj(θ ,y) ,
(

θ max
i −θi

ν

)
yi if θi > θ max

i − ν and

yi > 0, Proj(θ ,y) ,
(

θi−θ min
i

ν

)
yi if θi < θ min

i + ν and yi < 0, and Proj(θ ,y) , yi otherwise. Based on the

above formulation, note that
(
θ − θ ∗

)T(Proj(θ ,y)− y
)
≤ 0 holds (see [30, 80] for details), where this

inequality can be also readily generalized to matrices using Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )), . . . ,

Proj(colm(Θ),colm(Y ))
)

where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes ith column operator.

Throughout this paper, we assume without loss of generality that the projection norm bound im-

posed on each column of Θ ∈ Rn×m is θmax. We next introduce the definition of the generalized restricted

potential function (generalized barrier Lyapunov function) from [1, 21].

Definition 5.1.2 Let ‖z‖H =
√

zTHz be a weighted Euclidean norm, where z ∈ Rp is a real column vector

and H ∈Rp×p
+ . We define φ(‖z‖H), φ : R→R, to be a generalized restricted potential function (generalized

barrier Lyapunov function) on the set

Dε , {z : ‖z‖H ∈ [0,ε)}, (5.1)

with ε ∈ R+ being a-priori, user-defined constant, if the following statements hold [1]:
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i) If ‖z‖H = 0, then φ(‖z‖H) = 0.

ii) If z ∈ Dε and ‖z‖H 6= 0, then φ(‖z‖H)> 0.

iii) If ‖z‖H→ ε , then φ(‖z‖H)→ ∞.

iv) φ(‖z‖H) is continuously differentiable on Dε .

v) If z ∈ Dε , then φd(‖z‖H)> 0, where

φd(‖z‖H),
dφ(‖z‖H)

d‖z‖2
H

. (5.2)

vi) If z ∈ Dε , then

2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0. (5.3)

Remark 5.1.1 A candidate generalized restricted potential function satisfying the conditions given in Defi-

nition 5.1.2 has the form φ(‖z‖H) = ‖z‖2
H/
(
ε−‖z‖H

)
, z ∈ Dε , which has the partial derivative φd(‖z‖H) =

(
ε− 1

2‖z‖H
)
/
(
ε−‖z‖H

)2
> 0, z ∈ Dε , with respect to ‖z‖2

H, and 2φd(‖z‖H)‖z‖2
H−φ(‖z‖H) = ε‖z‖2

H/
(
ε−

‖z‖H
)2

> 0, z ∈ Dε [1].

5.1.2.2 An Overview of the Set-Theoretic Model Reference Adaptive Control Architecture

We now overview the set-theoretic model reference adaptive control architecture introduced in [1].

To this end, consider the uncertain dynamical system given by

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(t,xp(t)), xp(0) = xp0, (5.4)

where xp(t) ∈ Rnp is the measurable state vector, u(t) ∈ Rm is the control input, Ap ∈ Rnp×np is a known

system matrix, Bp ∈ Rnp×m is a known input matrix, δp : R+×Rnp → Rm is a system uncertainty, Λ ∈

Rm×m
+ ∩Dm×m is an unknown control effectiveness matrix, and the pair (Ap,Bp) is controllable. Below we

introduce a standard system uncertainty parameterization [28–30].
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Assumption 5.1.1 The system uncertainty given by (5.4) is parameterized as

δp(t,xp) = W T
p (t)σp(xp), (5.5)

where Wp(t) ∈ Rs×m is a bounded unknown weight matrix (i.e., ‖Wp(t)‖F ≤ wp) with a bounded time

rate of change (i.e., ‖Ẇp(t)‖F ≤ ẇp) and σp : Rnp → Rs is a known basis function of the form σp(xp) =

[σp1(xp),σp2(xp), . . . ,σps(xp)]
T.

Note that by letting the first element of the basis function be a constant (i.e., σp1(xp) = b), the

parameterization given by (5.5) also captures exogenous disturbances. To address command following,

let c(t) ∈ Rnc be a given bounded piecewise continuous command and xc(t) ∈ Rnc be the integrator state

satisfying

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0, (5.6)

where Ep ∈ Rnc×np allows the selection of a subset of xp(t) to follow c(t). Using (5.4) and (5.6), we write

ẋ(t) = Ax(t)+BΛu(t)+BW T
p (t)σp(xp(t))+Brc(t), x(0) = x0, (5.7)

where x(t), [xT
p (t), xT

c (t)]
T∈Rn, n = np +nc, is the augmented state vector, and x0 , [xT

p0, xT
c0]

T,

A ,




Ap 0np×nc

Ep 0nc×nc


 ∈ Rn×n, (5.8)

B ,

[
BT

p 0T
nc×m

]T

∈ Rn×m, (5.9)

Br ,

[
0T

np×nc
−Inc×nc

]T

∈ Rn×nc . (5.10)

Next, consider the (augmenting) feedback control law given by

u(t) = un(t)+ua(t), (5.11)

where un(t) ∈ Rm, and ua(t) ∈ Rm are the nominal and adaptive control laws, respectively. Furthermore, let

the nominal control law be
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un(t) =−Kx(t), (5.12)

such that Ar , A−BK, K ∈ Rm×n, is Hurwitz. Using (5.11) and (5.12) in (5.7) yields

ẋ(t) = Arx(t)+Brc(t)+BΛ
[
ua(t)+W T(t)σ

(
x(t)
)]
, x(0) = x0, (5.13)

where

W (t),
[
Λ
−1W T

p (t), (Λ
−1− Im×m)K

]T ∈ R(s+n)×m, (5.14)

is an unknown (aggregated) weight matrix and

σ
(
x(t)
)
, [σT

p
(
xp(t)

)
,xT(t)]T ∈ Rs+n, (5.15)

is a known (aggregated) basis function. Considering (5.13), let the adaptive control law be

ua(t) =−Ŵ T(t)σ
(
x(t)
)
, (5.16)

where Ŵ (t) ∈ R(s+n)×m is an estimate of W (t).

Note that the theoretical development of an update law to construct the estimate Ŵ (t) is crucial

in any model reference adaptive control design for achieving desired command following characteristics

captured by the reference model given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (5.17)

with xr(t)∈Rn being the reference state vector. Following the set-theoretic model reference adaptive control

architecture developed in [1] (see also [93, 101–104, 108]), consider the update law for (5.16) given by

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
, Ŵ (0) = Ŵ0, (5.18)

with Ŵmax being the projection norm bound. In (5.18), additionally, γ ∈ R+ is the learning rate (i.e.,

adaptation gain), P ∈ Rn×n
+ is a solution of the Lyapunov equation given by

133



www.manaraa.com

0 = AT
r P+PAr +R, (5.19)

with R ∈ Rn×n
+ , and e(t), x(t)− xr(t) is the system error.

Remark 5.1.2 One can write the system error dynamics and the weight estimation error dynamics respec-

tively as

ė(t) = Are(t)−BΛW̃ T(t)σ
(
x(t)
)
, e(0) = e0, (5.20)

˙̃W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, (5.21)

where W̃ (t) , Ŵ (t)−W (t), is the weight estimation error. Note that φd(‖e(t)‖P) in (5.18) can be viewed

as an error dependent learning rate and ‖W (t)‖F ≤ w and ‖Ẇ (t)‖F ≤ ẇ automatically holds as a direct

consequence of Assumption 5.1.1. From a theoretical standpoint, the update law given by (5.18) for the set-

theoretic model reference adaptive control architecture can be derived by considering the following energy

function

V (e,W̃ ) = φ(‖e‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
, (5.22)

where Dε , {e(t) : ‖e(t)‖P < ε} and P ∈ Rn×n
+ is a solution of the Lyapunov equation in (5.19) with R ∈

Rn×n
+ . Note that V (0,0) = 0, V

(
e,W̃

)
> 0 for

(
e,W̃

)
6= (0,0), and

V̇
(
e(t),W̃ (t)

)
≤ −1

2
αV (e,W̃ )+µ, (5.23)

where α , λmin(R)
λmax(P)

, d , 2γ−1w̃ ẇ‖Λ‖2, µ , 1
2 αγ−1w̃2‖Λ‖2+d, and w̃ = Ŵmax+w. By applying Lemma 1 of

[23, 25], one can now conclude the boundedness of the closed-loop dynamical system given by (5.20) and

(5.21) as well as the strict performance bound on the system error given by (see [1] for details)

‖e(t)‖P < ε. (5.24)
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5.1.3 Set-theoretic Model Reference Adaptive Control Architecture Design for the Generic Trans-
port Model

We consider the NASA GTM 6-DOF rigid aircraft state space model [133] in the form of (5.4) with

xp(t) = [h(t), U(t), α(t),q(t), θ(t), β (t), p(t), r(t), φ(t), ψ(t)] ∈ R10, (5.25)

u(t) = [FT(t), δe(t), δr(t), δ
L
f1
, · · · , δ

L
f16
, δ

R
f1
, · · · , δ

R
f16
] ∈ R35, (5.26)

being the measurable state vector and control signal vector, respectively. In (5.4), h(t) is the height (in

ft), U(t) is the speed (in ft/s), α(t) is the angle of attack (in rad), θ(t) is the pitch angle (in rad), β (t) is

the sideslip angle (in rad), p(t),q(t) and r(t) are the angular velocities (in rad/s), φ(t) is the roll angle (in

rad), and ψ(t) is the heading angle. In (5.25), FT(t) is the thrust of the two engines (in lbs), δe(t) is the

elevator control input (in rad), δr(t) is the rudder control input (in rad), δ L
f1

and δ R
f1

correspond to the furthest

inboard Variable Camber Continuous Trailing Edge Flap (VCCTEF) segment on the left and the right wings,

respectively (in rad). For details, we refer interested readers to [133].

In what follows in this section, we design the set-theoretic adaptive control for both longitudinal

and lateral-directional dynamics under the common physical assumption that the longitudinal and lateral-

directional dynamics are not strictly coupled and then we use the resulting control input signals for the

coupled system given by (5.4).

5.1.3.1 Longitudinal Control Design

For the longitudinal dynamics, we consider the state vector denoted as xplo(t) = [α(t), q(t)]T ∈ R2

and the control input is denoted as ulo(t) = δe(t) ∈ R with the dynamics given by

ẋplo(t) = Aploxplo(t)+BploΛloulo(t)+Bploδlo(t,xplo(t)), xplo(0) = xplo0. (5.27)

To address command following, let clo(t), cα(t) ∈ R, be a given bounded piecewise continuous command

for the angle of attack and xcα
(t) ∈ R, be the integrator state satisfying ẋcα

(t) = Eploxplo(t)− cα(t),xcα
(0) =

xcα 0, where Eplo = [1, 0]. Now using Assumption 5.1.1, (5.27) can be written as ẋlo(t) = Aloxlo(t) +

BloΛlou(t) + BloW T
plo
(t)σplo(xplo(t)) + Brlocα(t),xlo(0) = xlo0 where xlo(t) , [xT

plo
(t), xT

cα
(t)]T ∈ R3, is the
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augmented state vector, and xlo0 , [xT
plo0,x

T
cα 0]

T,

Alo ,




Aplo 02×1

Eplo 0


 ∈ R3×3, (5.28)

Blo ,

[
BT

plo
0

]T

∈ R3, (5.29)

Brlo ,

[
0 0 −1

]T

∈ R3. (5.30)

Now, by taking similar steps as introduced in Section 5.1.2, one can get

ẋlo(t) = Arloxlo(t)+Brloclo(t)+BloΛlo
[
ualo(t)+W T

lo(t)σlo
(
xlo(t)

)]
, xlo(0) = xlo0, (5.31)

where Arlo , Alo−BloKlo, Klo ∈ R1×3, Wlo(t) ,
[
Λ
−1
lo W T

plo
(t), (Λ−1

lo −1)Klo
]T ∈ R5 is an unknown weight

matrix and σlo
(
xlo(t)

)
, [σT

plo

(
xplo(t)

)
,xT

lo(t)]
T ∈ R5 is a known basis function.

Therefore, we consider the feedback control law for the longitudinal dynamics given by

ulo(t) = unlo(t)+ualo(t), (5.32)

with

unlo(t) = −Kloxlo(t), (5.33)

ualo(t) = −Ŵ T
lo(t)σlo

(
xlo(t)

)
, (5.34)

where Ŵlo(t) ∈ R5 is the estimate of Wlo(t) satisfying the update law

˙̂Wlo(t) = γloProjm
(

Ŵlo(t),φd(‖elo(t)‖Plo)σlo
(
xlo(t)

)
eT

lo(t)PloBlo

)
, Ŵlo(0) = Ŵlo0, (5.35)

with Ŵmaxlo being the projection norm bound. In (5.35), γlo ∈R+ is the learning rate, Plo ∈R3×3
+ is a solution

of the Lyapunov equation given by

0 = AT
rlo

Plo +PloArlo +Rlo, (5.36)
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with Rlo ∈ R3×3
+ , and elo(t) , xlo(t)− xrlo(t) is the system error in longitudinal dynamics with xrlo(t) being

the reference state vector, which satisfies the reference model for the longitudinal dynamics given by

ẋrlo(t) = Arloxrlo(t)+Brloclo(t), xrlo(0) = xrlo0. (5.37)

Finally, one can write the system error dynamics and weight estimation error dynamics respectively

as

ėlo(t) = Arloelo(t)−BloΛloW̃ T
lo(t)σlo

(
xlo(t)

)
, elo(0) = elo0, (5.38)

˙̃Wlo(t) = γloProjm
(

Ŵlo(t),φd(‖elo(t)‖Plo)σlo
(
xlo(t)

)
eT

lo(t)PloBlo

)
−Ẇlo(t), W̃lo(0) = W̃lo0, (5.39)

where W̃lo(t) , Ŵlo(t)−Wlo(t), is the weight estimation error. Based on the result overviewed in Section

5.1.2, one can easily conclude the boundedness of the closed-loop dynamical system given by (5.38) and

(5.39) as well as the strict performance bound on the system error in longitudinal dynamics given by

‖elo(t)‖Plo < εlo. (5.40)

5.1.3.2 Lateral-Directional Control Design

The control design for the lateral-directional dynamics follows similarly. In particular, we consider

the state vector denoted as xpla(t) = [β (t), p(t), r(t), φ(t)]T ∈ R4 and the control input denoted as ula(t) =

[δr(t), δ L
f1
(t), · · · , δ L

f16
(t), δ R

f1
(t), · · · , δ R

f16
(t)] ∈ R33 with the dynamics given by

ẋpla(t) = Aplaxpla(t)+BplaΛlaula(t)+Bplaδla(t,xpla(t)), xpla(0) = xpla0. (5.41)

To address command following, let cβ (t) ∈ R and cφ (t) ∈ R be a given bounded piecewise continuous

command for the sideslip angle (in rad) and roll angle (in rad), respectively. In addition, let cla(t) ,

[cβ (t), cφ (t)]T ∈R2 be the augmented command signal for the lateral-directional dynamics and xcla(t)∈R2,

be the integrator state satisfying

ẋcla(t) = Eplaxpla(t)− cla(t), xcla(0) = xcla0, Epla =




1 0 0 0

0 0 0 1


 . (5.42)

Now using Assumption 5.1.1, (5.41) can be augmented with (5.42) as
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ẋla(t) = Alaxla(t)+BlaΛlau(t)+BlaW T
pla
(t)σpla(xpla(t))+Brlacla(t), xla(0) = xla0, (5.43)

where xla(t), [xT
pla
(t), xT

cla
(t)]T ∈ R6, is the augmented state vector, and xla0 , [xT

pla0,x
T
cla0]

T,

Ala ,




Apla 04×2

Epla 02×2


 ∈ R6×6, (5.44)

Bla ,

[
BT

pla
0T

2×33

]T

∈ R6×33, (5.45)

Brla ,

[
02×4 −I2×2

]T

∈ R6×2. (5.46)

Now, by taking similar steps as introduced in Section 5.1.2, one can get

ẋla(t) = Arlaxla(t)+Brlacla(t)+BlaΛla
[
uala(t)+W T

la (t)σla
(
xla(t)

)]
, xla(0) = xla0, (5.47)

where Arla ,Ala−BlaKla, Kla ∈R33×6, Wla(t),
[
Λ
−1
la W T

pla
(t), (Λ−1

la −1)Kla
]T ∈R10×33 is an unknown weight

matrix and σla
(
xla(t)

)
, [σT

pla

(
xpla(t)

)
,xT

la(t)]
T ∈ R10 is a known basis function.

Therefore, we consider the feedback control law for the lateral-directional dynamics given by

ula(t) = unla(t)+uala(t), (5.48)

with

unla(t) = −Klaxla(t), (5.49)

uala(t) = −Ŵ T
la (t)σla

(
xla(t)

)
, (5.50)

where Ŵla(t) ∈ R10×33 is the estimate of Wla(t) satisfying the update law

˙̂Wla(t) = γlaProjm
(

Ŵla(t),φd(‖ela(t)‖Pla)σla
(
xla(t)

)
eT

la(t)PlaBla

)
, Ŵla(0) = Ŵla0, (5.51)

with Ŵmaxla being the projection norm bound. In (5.51), γla ∈R+ is the learning rate, Pla ∈R6×6
+ is a solution

of the Lyapunov equation given by

0 = AT
rla

Pla +PlaArla +Rla, (5.52)
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with Rla ∈R6×6
+ , and ela(t), xla(t)−xrla(t) is the system error in the lateral-directional dynamics with xrla(t)

being the reference state vector, which satisfies the reference model for the lateral-directional dynamics

given by

ẋrla(t) = Arlaxrla(t)+Brlacla(t), xrla(0) = xrla0. (5.53)

Finally, one can write the system error dynamics and weight estimation error dynamics respectively

as

ėla(t) = Arlaela(t)−BlaΛlaW̃ T
la (t)σla

(
xla(t)

)
, ela(0) = ela0, (5.54)

˙̃Wla(t) = γlaProjm
(

Ŵla(t),φd(‖ela(t)‖Pla)σla
(
xla(t)

)
eT

la(t)PlaBla

)
−Ẇla(t), W̃la(0) = W̃la0, (5.55)

where W̃la(t), Ŵla(t)−Wla(t), is the weight estimation error. Once again, based on the result overviewed in

Section 5.1.2, one can easily conclude the boundedness of the closed-loop dynamical system given by (5.54)

and (5.55) as well as the strict performance bound on the system error in the lateral-directional dynamics

given by

‖ela(t)‖Pla < εla. (5.56)

5.1.4 Evaluation of Set-Theoretic Model Reference Adaptive Control Architecture on the Generic
Transport Model

In this section, we evaluate the NASA GTM performance using the set-theoretic adaptive control

architecture that we developed in Section 5.1.3. Specifically, the control signal in (5.32) and (5.48) that are

designed for the longitudinal and the lateral-directional dynamics, respectively, are applied to the coupled

dynamical system of the NASA GTM. The feedback mechanism of the architecture used in this paper is

illustrated in Figure 5.1.

For the configuration with 80% fuel ratio, an altitude of 3600 feet, and a Mach number of 0.797,

a linearized model under nominal conditions is obtained, where for a detailed description and the system

matrices we refer to [133]. Moreover, linear quadratic regulator (LQR) theory is used to design the nominal

controller gain matrices in the longitudinal dynamics with the weighting matrices as Qlo = diag([15,10,50])

to penalize xlo(t) and Rlo = 10 to penalize ulo(t), resulting in Klo = [−1.6958,−1.3820,−2.2361]. Similarly,
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ẋrlo(t) = Arloxrlo(t) + Brloclo(t)

+

xrlo(t)

ẋclo(t) = Eloxplo
(t) − clo(t)

xp(t)u(t)
e(t)

–

ẋrla(t) = Arlaxrla(t) + Brlacla(t)
xrla(t)

xr(t)

e(t)

u(t) = [0, ulo(t), uT
la(t)]

T

ulo(t) = −Kloxlo

ula(t) = −Klaxla

ẋcla(t) = Elaxpla
(t) − cla(t)

cla(t)

clo(t)

(
with (5.35) and (5.51)

)

xp(t)

xclo(t), xcla(t)

−ŴT
lo (t)σlo

(
xlo(t)

)

−ŴT
la (t)σla

(
xla(t)

)

Reference Model

x(t)

NASA GTM

Figure 5.1: Set-theoretic model reference adaptive control architecture.

for the lateral-directional dynamics we choose the weighting matrices as Qla = diag([15,5,5,10,50,50]) to

penalize xla(t) and Rla = 10I33×33 to penalize ula(t), resulting in the corresponding gain matrix Kla ∈ R33×6

that is not presented due to its high dimension. Figures 5.2 and 5.3 show the system response with the

nominal controller in absence of system uncertainties.

In what follows we illustrate the performance of the set-theoretic adaptive control architecture for

several adverse condition scenarios. For the set-theoretic adaptive control design in all of the scenarios,

we set the projection norm bound imposed on each element of the parameter estimate to Ŵlomax = 10 and

Ŵlamax = 20 and we select γlo = 200 and γla = 100. We use the generalized restricted potential function

given in Remark 5.1.1 with two choices for the performance bound ε for each scenario as εlo = εla =

0.15 and εlo = εla = 0.3 in order to strictly guarantee ‖xlo(t)− xrlo(t)‖Plo = ‖xla(t)− xrla(t)‖Pla < 0.15 and

‖xlo(t)− xrlo(t)‖Plo = ‖xla(t)− xrla(t)‖Pla < 0.3, respectively.

5.1.4.1 Uncertainties in Cmα
and Clp

We first consider the case when the variation of pitching moment coefficient with angle of attack

Cmα
and the variation of rolling moment coefficient with roll rate Clp are both reduced by 360% and we

set Λlo = Λla = I. Figures 5.4 and 5.5 show the system response with the nominal controller in presence

of these system uncertainties. Figures 5.6 to 5.8 show the system response with the set-theoretic adaptive

control architecture with εlo = εla = 0.3 and one can see that the proposed controller is able to recover the

system and enforce the required user-defined performance bounds on the system error trajectories. In order

140



www.manaraa.com

to get a closer tracking of the reference dynamics trajectories, we decrease the performance bounds on both

longitudinal and lateral-directional channels to εlo = εla = 0.15 as it can be seen from Figures 5.9 to 5.11.

Figure 5.2: System response with the nominal controller.

Figure 5.3: Control signals of the VCCTEF segments on the left and the right wings with the nominal
controller.
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Figure 5.4: System response with the nominal controller under scenario 5.1.4.1.

Figure 5.5: Control signals of the VCCTEF segments on the left and the right wings with the nominal
controller under scenario 5.1.4.1.
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Figure 5.6: Set-theoretic controller response with εlo = εla = 0.3 under scenario 5.1.4.1.

Figure 5.7: Control signals of the VCCTEF segments on the left and the right wings for the case where
εlo = εla = 0.3 under scenario 5.1.4.1.
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Figure 5.8: The error norm (top) and the effective error dependent adaptation rate (bottom) for the case
where εlo = εla = 0.3 under scenario 5.1.4.1.

Figure 5.9: Set-theoretic controller response with εlo = εla = 0.15 under scenario 5.1.4.1.
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Figure 5.10: Control signals of the VCCTEF segments on the left and the right wings for the case where
εlo = εla = 0.15 under scenario 5.1.4.1.

Figure 5.11: The error norm (top) and the effective error dependent adaptation rate (bottom) for the case
where εlo = εla = 0.15 under scenario 5.1.4.1.
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5.1.4.2 Uncertainties in Cnβ
and Clβ

As the second scenario, we consider the case when the variation of yawing moment coefficient with

sideslip angle Cnβ
and the variation of rolling moment coefficient with sideslip angle Clβ are both reduced

by 300%, and we set Λlo = Λla = I. Figures 5.12 and 5.13 show the system response with the nominal

controller in presence of these system uncertainties. Figures 5.14 to 5.16 show the system response with the

set-theoretic adaptive control architecture with εlo = εla = 0.3 and one can see that the proposed controller

is able to recover the system and strictly enforce the user-defined performance bounds on the system error

trajectories. Once again, to achieve a better tracking performance, we decrease the performance bounds on

both longitudinal and lateral-directional channels to εlo = εla = 0.15 as it can be seen from Figures 5.17 to

5.19.

5.1.4.3 Uncertainties in Cmα
, Clβ , Cnβ

and Clp

Finally, we consider the case when the variation of pitching moment coefficient with angle of attack

Cmα
and the variation of rolling moment coefficient with sideslip angle Clβ are both reduced by 150%, and

also the variation of yawing moment coefficient with sideslip angle Cnβ
and the variation of rolling moment

coefficient with roll rate Clp are reduced by 100%. We further consider that the control effectiveness matrices

Figure 5.12: System response with the nominal controller under scenario 5.1.4.2.
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Figure 5.13: Control signals of the VCCTEF segments on the left and the right wings with the nominal
controller under scenario 5.1.4.2.

Figure 5.14: Set-theoretic controller response with εlo = εla = 0.3 under scenario 5.1.4.2.
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Figure 5.15: Control signals of the VCCTEF segments on the left and the right wings for the case where
εlo = εla = 0.3 under scenario 5.1.4.2.

Figure 5.16: The error norm (top) and the effective error dependent adaptation rate (bottom) for the case
where εlo = εla = 0.3 under scenario 5.1.4.2.
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Figure 5.17: Set-theoretic controller response with εlo = εla = 0.15 under scenario 5.1.4.2.

Figure 5.18: Control signals of the VCCTEF segments on the left and the right wings for the case where
εlo = εla = 0.15 under scenario 5.1.4.2.
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Figure 5.19: The error norm (top) and the effective error dependent adaptation rate (bottom) for the case
where εlo = εla = 0.15 under scenario 5.1.4.2.

on both longitudinal and lateral-directional channels are given by Λlo = 0.25, Λla = 0.25I33×33. Figures 5.20

and 5.21 show the system response with the nominal controller in presence of these system uncertainties.

Figures 5.22 to 5.24 show the system response with the set-theoretic adaptive control architecture with

εlo = εla = 0.3 where it can be seen that the proposed controller is able to recover the system and strictly

enforce the required user-defined performance bounds on the system error trajectories. In order to achieve

a closer tracking of the reference dynamics trajectories, once again we decrease the performance bounds on

both longitudinal and lateral-directional channels to εlo = εla = 0.15 as it can be seen from Figures 5.25 to

5.27.

5.1.5 Conclusion

A set-theoretic model reference adaptive control architecture was applied to the longitudinal and

lateral-directional dynamics of the NASA generic transport model. The simulation results showed that this

control framework was capable of enforcing user-defined performance guarantees on this model without

knowledge on the upper and lower bounds on the system uncertainties.
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Figure 5.20: System response with the nominal controller under scenario 5.1.4.3.

Figure 5.21: Control signals of the VCCTEF segments on the left and the right wings with the nominal
controller under scenario 5.1.4.3.
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Figure 5.22: Set-theoretic controller response with εlo = εla = 0.3. under scenario 5.1.4.3.

Figure 5.23: Control signals of the VCCTEF segments on the left and the right wings for the case where
εlo = εla = 0.3 under scenario 5.1.4.3.
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Figure 5.24: The error norm (top) and the effective error dependent adaptation rate (bottom) for the case
where εlo = εla = 0.3 under scenario 5.1.4.3.

Figure 5.25: Set-theoretic controller response with εlo = εla = 0.15 under scenario 5.1.4.3.
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Figure 5.26: Control signals of the VCCTEF segments on the left and the right wings for the case where
εlo = εla = 0.15 under scenario 5.1.4.3.

Figure 5.27: The error norm (top) and the effective error dependent adaptation rate (bottom) for the case
where εlo = εla = 0.15 under scenario 5.1.4.3.
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5.2 Experimental Results with the Set-Theoretic Model Reference Adaptive Control Architecture
on an Aerospace Testbed2

In this paper, we present experimental results of a recently developed set-theoretic model reference

adaptive control architecture on an aerospace testbed, which is configured as a conventional dual-rotor

helicopter. The key feature of this architecture allows the system error bound between the state of an

uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system

performance, to be less than a-priori, user-defined worst-case performance bound. This means that this

proposed architecture is suitable for enforcing strict performance guarantees during the transient and steady-

state response of the adaptation process. Specifically, we first experimentally demonstrate the practical

capabilities of this adaptive control algorithm with constant performance bounds on the considered testbed.

We then consider the time-varying performance bounds, where we highlight how a control designer is

empowered by the set-theoretic model reference adaptive control architecture to control the closed-loop

system performance as desired on different time intervals (e.g. transient time interval and steady-state time

interval) and also how to handle a possible system initialization error that can happen in practice.

5.2.1 Introduction

Although model reference adaptive control architectures are capable of guaranteeing closed-loop

system stability in the presence of exogenous disturbances and system uncertainties, one of the major

drawbacks to adopting these control frameworks is the inability to obtain user-defined performance guar-

antees. For addressing this limitation, we recently proposed set-theoretic model reference adaptive control

architecture in a set of papers [1, 2, 93, 101–106, 108, 119]. The key feature of set-theoretic model reference

adaptive control architecture allows the system error bound between the state of an uncertain dynamical

system and the state of a reference model, which captures a desired closed-loop system performance, to

be less than a-priori, user-defined worst-case performance bound. This means that this architecture is

suitable for enforcing strict performance guarantees during the transient and steady-state response of the

adaptation process. Specifically, [1] presents this control framework for achieving time-invariant perfor-

mance bounds, where in [2, 108] this framework is further extended to guarantee time-varying user-defined

performance bounds. The generalization of the set-theoretic model reference adaptive control architecture

to the unstructured system uncertainties is studied in [93, 102] and also the extension of this architecture

2This section has been submitted to the AIAA Guidance, Navigation, and Control Conference.
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for guaranteeing performance in the presence of actuator failures and actuator dynamics are respectively

presented in [101, 119]. This framework is also recently employed for decentralized control of large-scale

modular systems in [103, 104]. In [105, 106] an application of the set-theoretic model reference adaptive

control architecture are respectively presented on the NASA generic transport model and a rigid body vehicle

on exponential coordinates.

Primarily building on the results of [1, 2, 108], this paper presents experimental results of a recently

developed set-theoretic model reference adaptive control architecture on an aerospace testbed, configured

as a conventional dual-rotor helicopter. Specifically, we first experimentally demonstrate the practical

capabilities of this adaptive control algorithm with constant performance bounds in [1] compared with the

standard model reference adaptive controller. From a practical standpoint, we then show how the extension

of the set-theoretic model reference adaptive control architecture to time-varying performance bounds in

[2, 108] gives the control designer a flexibility to control the closed-loop system performance as desired

on different time intervals (e.g. transient time interval and steady-state time interval). In addition, we

demonstrate the efficacy of this control framework for handling the initialization error that can happen in

practical settings.

The organization of the rest of this paper is as follows. Section 5.2.2 provides the problem for-

mulation. Section 5.2.3 overviews the set-theoretic model reference adaptive control architecture with

constant and time-varying performance bounds. Section 5.2.4 illustrates the efficacy of the set-theoretic

model reference adaptive control architecture applied to the AERO platform. Finally, the conclusions are

drawn in Section 5.2.5. The notation used in this paper is fairly standard as similar to [1, 2, 108]. To be

self-contained, N denotes the set of natural numbers, R denotes the set of real numbers, Rn denotes the set

of n× 1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ (respectively, R+) denotes

the set of positive (respectively, nonnegative-definite) real numbers, Rn×n
+ (respectively, Rn×n

+ ) denotes the

set of n×n positive-definite (respectively, nonnegative-definite) real matrices, Dn×n denotes the set of n×n

real matrices with diagonal scalar entries, 0n×n denotes the n×n zero matrix, and “,” denotes equality by

definition. In addition, we write (·)T for the transpose operator, (·)−1 for the inverse operator, ‖ · ‖F for

the Frobenius norm, and ‖ · ‖2 for the Euclidean norm. Furthermore, we write ‖A‖2 ,
√

λmax(ATA) for

the induced 2-norm of the matrix A ∈ Rn×m, λmin(A) (resp., λmax(A)) for the minimum (resp., maximum)

eigenvalue of the matrix A ∈ Rn×n, and tr(·) for the trace operator.
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5.2.2 Problem Formulation

Consider the uncertain dynamical system given by

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(t,xp(t)), xp(0) = xp0. (5.57)

In the above expression, xp(t)∈Rnp denotes the measurable state vector, u(t)∈Rm denotes the control input,

Ap ∈Rnp×np denotes a known system matrix, Bp ∈Rnp×m denotes a known input matrix, δp : R+×Rnp→Rm

denotes a system uncertainty, and Λ ∈ Rm×m
+ ∩Dm×m denotes an unknown control effectiveness matrix. As

standard, it is assumed that the pair (Ap,Bp) is controllable. Note that the considered uncertain dynamical

system dynamics given in (5.57) fits appropriately to the experimental aerospace testbed (see Section 5.2.4

for details). Here, we also consider that the system uncertainty given by (5.57) is parameterized as

δp(t,xp) = W T
p (t)σp(xp), (5.58)

where Wp(t) ∈ Rs×m is a bounded unknown weight matrix (i.e., ‖Wp(t)‖F ≤ wp) with a bounded time

rate of change (i.e., ‖Ẇp(t)‖F ≤ ẇp) and σp : Rnp → Rs is a known basis function of the form σp(xp) =

[σp1(xp),σp2(xp), . . . ,σps(xp)]
T that includes locally Lipschitz elements.

To address command following, it is of practice to consider an integral state xc(t) ∈ Rnc satisfying

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0. (5.59)

Here, c(t) ∈ Rnc is a piecewise continuous command and Ep ∈ Rnc×np is a matrix introduced to select a

subset of xp(t) to follow c(t). Considering this integral state, one can now defined the augmented state

vector as x(t), [xT
p (t), xT

c (t)]
T∈Rn, n = np +nc, and write

ẋ(t) = Ax(t)+BΛu(t)+BW T
p (t)σp(xp(t))+Brc(t), x(0) = x0, (5.60)

using (5.57) and (5.59), where

A ,




Ap 0np×nc

Ep 0nc×nc


 ∈ Rn×n, (5.61)
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B ,

[
BT

p 0T
nc×m

]T

∈ Rn×m, (5.62)

Br ,

[
0T

np×nc
−Inc×nc

]T

∈ Rn×nc . (5.63)

Next, consider the feedback control law given by

u(t) = un(t)+ua(t). (5.64)

In (5.64), un(t) ∈ Rm represents the nominal control law of the form given by

un(t) =−Kx(t), (5.65)

such that Ar , A−BK, K ∈ Rm×n, is Hurwitz and ua(t) ∈ Rm represents the adaptive control law to be

introduced in Section 5.2.3. It is now straightforward to write

ẋ(t) = Arx(t)+Brc(t)+BΛ
[
ua(t)+W T(t)σ

(
x(t)
)]
, x(0) = x0, (5.66)

using (5.64) and (5.65) in (5.60), where W (t) ,
[
Λ−1W T

p (t), (Λ
−1− Im×m)K

]T ∈ R(s+n)×m is an unknown

weight matrix and σ
(
x(t)
)
, [σT

p
(
xp(t)

)
,xT(t)]T ∈ Rs+n is a known basis function.

5.2.3 Set-Theoretic Model Reference Adaptive Control Architecture [1, 2]

As it is well-known, the selection of the adaptive control law and its corresponding update law plays

a crucial role in any model reference adaptive control design for achieving desired command following

characteristics captured by the reference model given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, (5.67)

with xr(t) ∈ Rn being the reference state vector. In this section, we concisely overview the set-theoretic

model reference adaptive control architecture proposed in [1] and [2, 108] for respectively enforcing constant

and time-varying user-defined performance bound guarantees on the norm of system error vector.
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5.2.3.1 Constant Performance Bound Guarantees

We begin with the set-theoretic model reference adaptive control architecture developed in [1] for

enforcing constant performance bound guarantees. To this end, we let the adaptive control law be given by

ua(t) =−Ŵ T(t)σ
(
x(t)
)
, (5.68)

where Ŵ (t)∈R(s+n)×m is an estimate of W (t). We now use the well-known projection operator. Based on its

definition (e.g., see [30, 80]),
(
θ−θ ∗

)T(Proj(θ ,y)−y
)
≤ 0 holds for any vector y, where the vector θ is the

estimation of the unknown vector θ ∗. This definition can be further generalized to matrices as Projm(Θ,Y ) =
(
Proj(col1(Θ),col1(Y )), . . . ,Proj(colm(Θ),colm(Y ))

)
, where Θ ∈ Rn×m, Y ∈ Rn×m, and coli(·) denotes ith

column operator resulting in tr
[
(Θ−Θ∗)T(Projm(Θ,Y )−Y )

]
≤ 0. Now, consider the update law for (5.68)

given by

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
, Ŵ (0) = Ŵ0, (5.69)

with Ŵmax being the projection norm bound. In (5.69), γ ∈ R+ is the learning rate (i.e., adaptation gain),

P ∈ Rn×n
+ is a solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (5.70)

with R∈Rn×n
+ , and e(t), x(t)−xr(t) is the system error. In (5.69), in addition, φ(‖e(t)‖P) is the generalized

restricted potential function defined on the set Dε , {e(t) : ‖e(t)‖P ∈ [0,ε)} with ‖e(t)‖P =
√

eT(t)Pe(t)

being the weighted system error and ε ∈ R+ being a-priori, user-defined constant, satisfying

i) If ‖e(t)‖P = 0, then φ(‖e(t)‖P) = 0.

ii) If e(t) ∈ Dε and ‖e(t)‖P 6= 0, then φ(‖e(t)‖P)> 0.

iii) If ‖e(t)‖P→ ε , then φ(‖e(t)‖P)→ ∞.

iv) φ(‖e(t)‖P) is continuously differentiable on Dε .

v) If e(t) ∈ Dε , then φd(‖e(t)‖P)> 0, where φd(‖e(t)‖P),
dφ(‖e(t)‖P)

d‖e(t)‖2
P
.

vi) If e(t) ∈ Dε , then 2φd(‖e(t)‖P)‖e(t)‖2
P−φ(‖e(t)‖P)> 0.
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Remark 5.2.1 From a theoretical standpoint, the update law given by (5.69) for the set-theoretic model

reference adaptive control architecture can be derived by considering the following energy function [1]

V (e,W̃ ) = φ(‖e‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
. (5.71)

where W̃ (t) , Ŵ (t)−W (t). As shown in [1], the time derivative of this energy function is upper bounded

by

V̇
(
e(t),W̃ (t)

)
≤ −1

2
αV (e,W̃ )+µ, (5.72)

where α , λmin(R)
λmax(P)

, d , 2γ−1w̃ ẇ‖Λ‖2, µ , 1
2 αγ−1w̃2‖Λ‖2+d, w̃= Ŵmax+w, ‖W (t)‖F≤w, and ‖Ẇ (t)‖F≤

ẇ. In particular, (5.72) is sufficient to conclude that V (e,W̃ ) is upper bounded. Hence, one can now conclude

with ‖e0‖P < ε that the pair (e(t),W̃ (t)) is bounded and the system error satisfies the strict bound given by

‖e(t)‖P < ε, t ≥ 0. Once again, we refer to Theorem 3.1 of [1] for details.

5.2.3.2 Time-Varying Performance Bound Guarantees

We now overview the results in [2] for enforcing time-varying performance bound guarantees. For

this purpose, we consider the modified reference model given by

ẋrm(t) = Arxrm(t)+Brc(t)+ζ (t), xrm(0) = xr0, (5.73)

where xrm(t) ∈Rn is the modified reference state vector and ζ (t) ∈Rn is an added term to be defined below.

Letting em(t), x(t)− xrm(t), we consider the error transformation given by

eξ (t) = ξ (t)em(t), (5.74)

where ξ (t) ∈R+ is a user-defined scalar transformation function that is used later to enforce a time-varying

performance bound on the system error vector. We also let

ζ (t) , ξ̇ (t)ξ−1(t)em(t). (5.75)

Furthermore, we utilize the generalized restricted potential function introduced in Section 5.2.3.1 and con-
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sider the update law for (5.68) given by

˙̂W (t) = γProjm
(

Ŵ (t),ξ (t)φd(‖eξ (t)‖P)σ
(
x(t)
)
eT

ξ
(t)PB

)
, Ŵ (0) = Ŵ0, (5.76)

with Ŵmax being the projection bound and γ ∈ R+ being the learning rate.

Remark 5.2.2 From a theoretical standpoint, the update law given by (5.76) for the set-theoretic model

reference adaptive control architecture can be derived by considering the following energy function [2]

V (eξ ,W̃ ) = φ(‖eξ‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
, (5.77)

where W̃ (t), Ŵ (t)−W (t). The time derivative on this energy function satisfies the upper bound given by

V̇
(
eξ (t),W̃ (t)

)
≤ −1

2
αV (eξ ,W̃ )+µ, (5.78)

holds, where α , λmin(R)
λmax(P)

, d , 2γ−1w̃ ẇ‖Λ‖2, µ , 1
2 αγ−1w̃2‖Λ‖2 + d, w̃ = Ŵmax +w, ‖W (t)‖F ≤ w, and

‖Ẇ (t)‖F ≤ ẇ. In particular, (5.78) is sufficient to conclude boundedness of V (eξ ,W̃ ). Hence, one can now

conclude with ‖em0‖P < ε/ξ (0) that the closed-loop system state (eξ (t),W̃ (t)) is bounded and the system

error satisfies the strict performance bound given by ‖em(t)‖P < ε/ξ (t), t ≥ 0. Once again, we refer to

Theorem 3.2 of [2] for details.

To enforce strict time-varying performance guarantees, one can also use Theorem 3.1 of [2] instead

of Theorem 3.2 of [2]. We note here that the former theorem if used requires an extra condition that is

λmin(PBΛBTP) 6= 0. However, if λmin(PBΛBTP) = 0 and λmin(R)− 2ελmax(P) > 0 both hold at the same

time with ε , max
t∈R+

ε̇(t)
ε(t) , then it readily follows from Theorem 3.1 of [2] that it can be utilized without this

extra condition.

5.2.4 Experimental Study with an Aerospace Testbed

In this section, we experimentally demonstrate the practical capabilities of the set-theoretic model

reference adaptive control architecture with constant and time-varying performance bounds on the Quanser

AERO platform in dual-rotor helicopter configuration [3]. For this purpose, we follow the presented control

algorithms in Section 5.2.3 as illustrated in Figure 5.28.
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Figure 5.28: Set-theoretic model reference adaptive control architecture.

5.2.4.1 Physical Setup

For the control design, we consider the linearized model of the considered aerospace testbed given

by

Jpθ̈(t)+Dpθ̇(t)+Kspθ(t) = τp(t), θ(0) = θ0, (5.79)

Jyψ̈(t)+Dyψ̇(t) = τy(t), ψ(0) = ψ0, (5.80)

where θ(t) is the pitch angle (in radians), ψ(t) is the yaw angle (in radians), Jp (respectively, Jy) is the total

moment of inertia about the pitch (respectively, yaw) axis, Dp (respectively, Dy) is the damping about the

pitch (respectively, yaw) axis, and Ksp is the stiffness about the pitch axis. The control torques acting on the

pitch and yaw axes are given by

τp(t) = KppVp(t)+KpyVy(t), (5.81)

τy(t) = KypVp(t)+KyyVy(t). (5.82)

where Vp(t) and Vy(t) are respectively the motor voltages applied to the pitch and yaw rotors, Kpp (respec-

tively, Kyy) is the torque thrust gain from the pitch (respectively, yaw) rotor, and Kpy (respectively, Kyp) is

the cross-torque thrust gain acting on the pitch (respectively, yaw) from the yaw (respectively, pitch) rotor.

162



www.manaraa.com

Table 5.1: The Quanser AERO platform parameters.

Jp [kgm2] 0.0219 Dy [kgm2s−1] 0.0220 Kpp [kgm2s−2V−1] 0.0011

Jy [kgm2] 0.0220 Ksp [kgm2s−2] 0.0375 Kyy [kgm2s−2V−1] 0.0022

Dp [kgm2s−1] 0.0071 Kyp [kgm2s−2V−1] -0.0027 Kpy [kgm2s−2V−1] 0.0021

Using (5.79) to (5.82), one can equivalently write the system dynamics in the form

ẋp(t) = Apxp(t)+Bpu(t), xp(0) = xp0, (5.83)

with

Ap =




0 0 1 0

0 0 0 1

−Ksp/Jp 0 −Dp/Jp 0

0 0 0 −Dy/Jy



, Bp =




0 0

0 0

Kpp/Jp Kpy/Jp

Kyp/Jy Kyy/Jy



, (5.84)

where xp(t) = [θ(t),ψ(t), θ̇(t), ψ̇(t)]T ∈R4 denotes the measurable state vector and u(t) = [Vp(t),Vy(t)]T ∈

R2 denotes the control input. The system parameters are obtained from the Quanser AERO user manual

[3] as shown in Table 5.1. Note that (5.83) is derived based on the ideal system conditions. However, in

practical application scenarios where system uncertainties are present, one can alternatively consider the

uncertain system dynamics in the form given by

ẋp(t) = Apxp(t)+BpΛ(u(t)+W T
p (t)σp(xp(t))), xp(0) = xp0, (5.85)

where Λ denotes an uncertain control effectiveness matrix, Wp(t) denotes a bounded unknown weight matrix,

and σp(xp(t)) denotes a known basis function.

Linear quadratic regulator theory is used to design the nominal controller gain matrix with the

weighting matrices as Q = diag([2,2,0,0,50,50]) to penalize x(t) and R = 0.001I2×2 to penalize u(t)

resulting in

K =




82.85 −124.21 29.70 −32.29 125.18 −185.28

117.26 78.55 38.95 19.04 185.28 125.18


 , (5.86)
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for (5.65). In this experiment, a 30 degree yaw maneuver is considered as the control objective; hence,

from a practical point of view, we pass the desired command through a low-pass filter to generate a smooth

yaw command. In addition, note that the pitch and yaw motor voltages saturate at 24 V and we consider

Wp(t) = 0 and the uncertain control effectiveness matrix to be assumed as Λ = 0.1I2×2 (i.e., 90% reduction

in control channel efforts) resulting in W = 9I2×2.

5.2.4.2 Experimental Results with Constant Performance Bound Guarantees

In this subsection, we illustrate the efficacy of the set-theoretic model reference adaptive controller

for enforcing constant strict performance guarantees. For this purpose, we start with the implementation of

the nominal and standard adaptive control laws to the AERO platform.

Figure 5.29 shows the performance of the nominal controller for command following. Introducing

the uncertain control effectiveness matrix, it is evident from Figure 5.30 that the nominal controller yields

to instability. As it is well-known [30], the standard adaptive control architecture can be implemented by

setting φd(‖e(t)‖P)= 1 in (5.69) for all time. Furthermore, we use rectangular projection operator and set the

upper and lower projection bounds imposed on each element of the parameter estimate as Ŵupper = 16I2×2

and Ŵlower = 2I2×2. Moreover, we use R = 1.5I6×6 to calculate P from (5.70) for the resulting Ar matrix.

Figure 5.31 presents the command following performance of the adaptive controller with γ = 5, where the

evolution of norm of the system error and the weight estimation are shown in Figure 5.32. Assuming that

we need a close tracking of the reference system such that the norm of the system error (i.e., ‖e(t)‖P)

be less than 0.4, this adaptive controller is not able to achieve this requirement. In order to improve the

performance, a control designer can increase the adaptation rate as well-known. Figure 5.33 presents the

command following performance of the adaptive controller with γ = 30, where the evolution of norm of the

system error and the weight estimation are shown in Figure 5.34. Although, the performance is improved

in this setting, the control objective (i.e., ‖e(t)‖P < 0.4) is not yet achieved. By further increasing the

adaptation rate to γ = 70, one can eventually obtain satisfactory results as it can be seen from Figures 5.35

and 5.36. Note that, even though the desired performance is obtained using γ = 70, this performance is

not guaranteed and is subject to change if the system uncertainties vary. In addition, one needs to perform

ad-hoc process to come up with this adaptation rate, which should be avoided in real-world safety-critical

scenarios.
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Next, in order to demonstrate the efficacy of the set-theoretic model reference adaptive controller

for enforcing constant strict performance guarantees by utilization of the error-dependent learning rate
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Figure 5.29: Command following performance with the nominal controller in the absence of the system
uncertainty.
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Figure 5.30: Command following performance with the nominal controller in the presence of the system
uncertainty.
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φd(‖e(t)‖P), we use the generalized restricted potential function of the form φ(‖e(t)‖P) = ‖e(t)‖2
P/(ε

2−

‖e(t)‖2
P), e(t) ∈Dε [2, 108], with ε = 0.4, and we set the constant learning rate to γ = 5. Figure 5.37 shows

the closed-loop dynamical system performance with the set-theoretic adaptive controller in Section 5.2.3.1,
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Figure 5.31: Command following performance with the adaptive controller using γ = 5.
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Figure 5.32: Norm of the system error trajectories and the evolution of the weight estimation Ŵ (t) with the
adaptive controller using γ = 5.

166



www.manaraa.com

where Figure 5.38 shows the norm of the system error trajectories, the evolution of the weight estimate

Ŵ (t), and the evolution of the effective learning rate. One can see from these figures that the expected

performance is achieved and the norm of the system error is guaranteed to be less than ε = 0.4. Note that,
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Figure 5.33: Command following performance with the adaptive controller using γ = 30.
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Figure 5.34: Norm of the system error trajectories and the evolution of the weight estimation Ŵ (t) with the
adaptive controller using γ = 30.
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any other values for learning rate γ can be used alternatively in this control architecture without violating

the desired user-defined performance guarantee (e.g., see [1]). In addition, unlike the standard adaptive

controller with γ = 70, this performance is obtained independent of the bound on the system uncertainties
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Figure 5.35: Command following performance with the adaptive controller using γ = 70.
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Figure 5.36: Norm of the system error trajectories and the evolution of the weight estimation Ŵ (t) with the
adaptive controller using γ = 70.
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and, more importantly, it does not require an ad-hoc tuning process – in fact, it tunes “γφd(‖e(t)‖P)" in

response to the system error to ensure the desired user-defined performance, automatically. This subsection
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Figure 5.37: Command following performance with the set-theoretic model reference adaptive controller in
Section 5.2.3.1.
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Figure 5.38: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), and the
effective learning rate γφd(·) with the set-theoretic model reference adaptive controller in Section 5.2.3.1.
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highlighted how the set-theoretic model reference adaptive control architecture empowers a control designer

for enforcing desirable system performance requirements, without concerning about the selection of the

adaptation rate and requiring the knowledge of the upper bound on the system uncertainty.

5.2.4.3 Experimental Results with Time-Varying Performance Bound Guarantees

In this subsection, we now demonstrate the efficacy of the set-theoretic model reference adaptive

controller for enforcing time-varying strict performance guarantees. In particular, we utilize the generalized

restricted potential function of the form φ(‖eξ (t)‖P) = ‖eξ (t)‖2
P/(ε

2−‖eξ (t)‖2
P), eξ (t) ∈ Dε [2, 108], with

ε = 1, and we set the constant learning rate to γ = 5. Furthermore, we choose the user-defined function

ξ (t) such that its inverse (ξ−1(t)) changes smoothly from 0.4 to 0.2 such that it allows more deviation at

the transient time interval (ξ−1
max = 0.4) and then it enforces more restricted bound for the steady-state time

interval (ξ−1
min = 0.2) in order to obtain a closer tracking performance by guaranteeing ‖x(t)− xrm(t)‖P <

ξ−1(t).

Figure 5.39 shows the closed-loop dynamical system performance with the set-theoretic adaptive

controller with time-varying performance bound, where Figure 5.40 shows the norm of the system error

trajectories, the evolution of the weight estimate Ŵ (t), and the evolution of the effective learning rate. One

can see from these figures that the set-theoretic control architecture in Section 5.2.3.2 enables the designer to

control the closed-loop system performance as desired on different time intervals (e.g. transient time interval

and steady-state time interval). Once again, we note that, any other values for learning rate γ can be used

alternatively in this control architecture without violating the desired user-defined performance guarantee.

As mentioned in Remark 5.2.1, to implement the set-theoretic control architecture in Section 5.2.3.1,

the initial error has to satisfy ‖e0‖P < ε . From a practical standpoint, and due to the possible initialization

error, this requirement may be restrictive. In what follows, we demonstrate the efficacy of the set-theoretic

model reference adaptive controller in Section 5.2.3.2 for addressing this limitation by enforcing time-

varying strict performance guarantees. To this end, we consider 10 degrees initialization error in the yaw

angle. We now utilize the error-dependent learning rate φd(‖eξ (t)‖P) and we set the constant learning rate

to γ = 5. Furthermore, we choose the user-defined function ξ (t) such that the resulting bound on the system

error behaves exponentially. This allows more deviation at the initial stage (ξ−1(0) = 2), and then gradually

enforces more restriction (ξ−1
min = 0.4) in order to obtain a closer tracking performance by guaranteeing

‖x(t)− xrm(t)‖P < ξ−1(t). Figure 5.41 shows the command following performance of the set-theoretic
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model reference adaptive controller in Section 5.2.3.2, where satisfactory result is obtained for tracking the

desired command. Once again, the key feature of the proposed control algorithm in practical applications
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Figure 5.39: Command following performance with the set-theoretic model reference adaptive controller in
Section 5.2.3.2.
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Figure 5.40: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), and the
effective learning rate γξ (t)φd(·) with the set-theoretic model reference adaptive controller in Section
5.2.3.2.
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is evident from Figure 5.42. Specifically, one can see from this figure that due to the initialization error,

the system error norm is large initially, therefore a time-varying performance bound is needed such that it
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Figure 5.41: Command following performance with the set-theoretic model reference adaptive controller in
Section 5.2.3.2.
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decreases from a large initial value to a small final value in order to handle the initial large system error

norm and eventually obtain the desired tracking performance.

5.2.5 Conclusion

In this paper, set-theoretic model reference adaptive control architectures with constant and time-

varying performance bounds were tested on an aerospace testbed, configured as a conventional dual-rotor

helicopter. The experimental results demonstrated that this control framework was capable of enforcing

user-defined performance guarantees without requiring strict knowledge of the upper and lower bounds

on the system uncertainties. Furthermore, the set-theoretic model reference adaptive control architecture

with time-varying performance bounds enhanced the overall system performance by not only controlling

the closed-loop system performance as desired on different time intervals (e.g. transient time interval and

steady-state time interval), but also by handling the initialization error.

5.3 A Set-Theoretic Model Reference Adaptive Control Architecture with Dead-Zone Effect3

In contrast to standard model reference adaptive control architectures with fixed learning rates, set-

theoretic model reference adaptive control architectures predicated on system error-dependent learning rates

have the capability to enforce user-defined worst-case performance bounds on the closed-loop uncertain

dynamical system trajectories. When learning is not needed (e.g., in the presence of small system errors

that often contain high-frequency residual signal contents), however, it is not theoretically straightforward

to stop the adaptation process with set-theoretic architectures using the common dead-zone function — a

practice that is widely-adopted in applications of standard model reference adaptive control architectures.

Motivated from this standpoint, the contribution of this paper is a set-theoretic model reference adaptive

control architecture with dead-zone effect. Specifically, the key feature of our framework utilizes a new

and continuous generalized restricted potential function, where it not only stops the adaptation process

inside the dead-zone but also allows the norm of the system error to be less than a user-defined performance

bound. The stability of the proposed technique is rigorously analyzed through several steps by showing the

boundedness of an energy function in all possible variations in the system error trajectories, which goes

well beyond the analyses of standard adaptive control schemes with the common dead-zone function. For

cases when this performance bound is time-varying, in addition, we show that this dead-zone also scales its

3This section has been submitted to the IFAC Journal Control Engineering Practice.
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size automatically to give the designer a flexibility to control the closed-loop system performance as desired

on different time intervals. Finally, we also experimentally validate the efficacy of the proposed technique

through an aerospace testbed.

5.3.1 Introduction

5.3.1.1 Literature Review and Contribution

In any model reference adaptive control algorithm, the system error between an uncertain dynamical

system and a reference model, which captures a desired closed-loop dynamical system response, is critical.

In particular, this error drives the update law and then the update law adjusts the feedback control gains

online in order to suppress this system error, and therefore, to make the uncertain dynamical system behave

close to the desired closed-loop dynamical system response. The update laws of standard model reference

adaptive control architectures utilize fixed learning rates and their resulting upper bounds on the norm of

the system error can be calculated based on Lyapunov arguments (see, for example, [16, 17, 28–30]). Yet,

as it is well-known (see, for example, [1]), these calculated upper bounds are usually conservative. As

a consequence, they may not give tight practical insights to a control designer for correctly assessing a

worst-case performance in the implementation process of these standard algorithms.

In contrast to standard model reference adaptive control algorithms, set-theoretic model reference

adaptive control architectures (see, for example, [1]), which are predicated on system error-dependent

learning rates, have a capability to directly enforce user-defined worst-case performance bounds on the

system errors, and therefore, on the closed-loop uncertain dynamical system trajectories (see also [1, Section

1] on how this architecture compares with other relevant literature works). When learning is not needed (e.g.,

in the presence of small system errors), however, it is not theoretically straightforward to stop the adaptation

process with set-theoretic architectures using the common dead-zone function due to their generalized

restricted potential function-based constructions. In particular, the use of the common dead-zone functions

is a widely-adopted practice (see, for example, [30, 134, 135]) in applications of standard model reference

adaptive control algorithms. This is motivated from the observation that small system errors generally

contain, for example, high-frequency residual content of exogenous disturbances and/or measurement noise.

Specifically, a model reference adaptive control algorithm with dead-zone is originally proposed by the

authors of [134] to stop the adaptation process when the system error is less than a prescribed value. The

authors of [135] also propose a smooth dead-zone version to the literature (see also [30, Section 11.2] for
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details). Yet, these contributions also utilize standard fixed learning rates and, once again, it is a challenge

to correctly assess a worst-case performance in a non-conservative way in the implementation process of

these algorithms.

The contribution of this paper is a set-theoretic model reference adaptive control architecture with

a dead-zone effect. The key feature of our framework utilizes a new and continuous generalized restricted

potential function. Instead of directly using the common dead-zone function, in particular, this potential

function is theoretically constructed in order not only to stop the adaptation process inside the dead-zone but

also to allow the norm of the system error to be less than a user-defined performance bound for achieving

strict closed-loop dynamical system response guarantees. Specifically, Section 5.3.3.1 first presents the

proposed approach with a user-defined constant performance bound on the system error, where dead-zone

effect is also treated as a constant region. We next address in Section 5.3.3.2 the case when this performance

bound is desired to be time-varying and show that this dead-zone also scales its size automatically to give the

designer a flexibility to control the closed-loop system performance as desired on different time intervals.

We refer to Section 5.3.1.2 for a motivational example.

We note here that the provided new stability analysis of the proposed architecture goes well beyond

the analyses of standard model reference adaptive control schemes with the common dead-zone function. In

particular, the stability of the proposed technique is rigorously analyzed through several steps by showing

the boundedness of an energy function in all possible variations in the system error trajectories, and hence,

it does not trivially follow from, for example, [1]. Finally, we also show the efficacy of the proposed

architecture through two illustrative numerical examples and, more importantly, through an aerospace

testbed experimentation in Section 5.3.4.

5.3.1.2 A Motivational Example

To elucidate the motivation behind the proposed model reference adaptive control architecture,

consider a simple-yet-representative scenario. Specifically, let x(t) be the scalar state of an uncertain

dynamical system and let xr(t) be the scalar state of a reference model. If we only focus on the problem

where the system error e(t) = x(t)− xr(t) needs to stay on the fixed set S capturing a constant worst-case

performance as depicted in Figure 5.43(a), then the original set-theoretic model reference adaptive control

architecture [1] can be utilized to address this problem. In addition to enforcing a worst-case performance

to the adaptation process through constraining the system error to stay in the set S, a control designer may
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(a) Constant performance bound. (b) Time-varying performance bound.

Figure 5.43: Graphical representations for the motivational example in Section 5.3.1.2.

also want to stop the adaptation when this system error belongs to a smaller set R⊂ S (dead-zone) as also

shown in this figure. As discussed above, this expectation is common in practice since small system errors

often contain high-frequency residual signal contents that the update laws should not take into account.

This problem is addressed in Section 5.3.3.1 through a new and continuous generalized restricted potential

function in the set-theoretic model reference adaptive control law.

Next, consider the case when a control designer wants to enforce a time-varying worst-case perfor-

mance to the adaptation process in order to shape the closed-loop system performance as desired on different

time intervals; that is, e(t) needs to obey to the time-varying set S as shown in Figure 5.43(b). For example,

while deviation from an ideal reference model trajectory can be tolerated within the transient time interval

(i.e., a larger user-defined performance bound), it is usually required to have a close command following

performance after this transition period (i.e., a tighter user-defined performance bound). This example also

motivates the smaller set R (dead-zone) to be time-varying. Specifically, the dead-zone is expected to

become smaller after the aforementioned transition period in order to incorporate more information from

the system error signal in to the update law. This problem is addressed in Section 5.3.3.2 through expanding

the results in Section 5.3.3.1, which allows the dead-zone to automatically scale its size based on the time-

varying changes on the assigned worst-case performance.

5.3.2 Mathematical Preliminaries

Before presenting the theoretical contributions of this paper in Sections 5.3.3.1 and 5.3.3.2 followed

by an experimental validation in Section 5.3.4, we first cover the notation used in this paper (Section 5.3.2.1),
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the considered problem formulation (Section 5.3.2.2), and a concise overview of the original set-theoretic

model reference adaptive control approach (Section 5.3.2.3).

5.3.2.1 Notation

In this paper, R denotes the set of real numbers, Rn denotes the set of n× 1 real column vectors,

Rn×m denotes the set of n×m real matrices, R+ (respectively, R+) denotes the set of positive (respectively,

nonnegative) real numbers, Rn×n
+ (respectively, Rn×n

+ ) denotes the set of positive-definite (respectively,

nonnegative-definite) n× n real matrices, Dn×n denotes the set of n× n real matrices with diagonal scalar

entries, 0n×n denotes the n×n zero matrix, and “,” denotes equality by definition. In addition, we write (·)T

for the transpose, (·)−1 for the inverse, tr(·) for the trace, ‖·‖2 for the Euclidean norm, ‖·‖F for the Frobenius

norm, ‖x‖A ,
√

xTAx for the weighted Euclidean norm with x∈Rn and A∈Rn×n
+ , and ‖A‖2 ,

√
λmax(ATA)

for the induced two-norm with A ∈ Rn×m.

5.3.2.2 Problem Formulation

This paper focuses on a class of uncertain dynamical systems given by

ẋ(t) = Ax(t)+BΛ
(
u(t)+δ (t,x(t))

)
, x(0) = x0, t ≥ 0. (5.87)

In (5.87), x(t) ∈ Rn, t ≥ 0, denotes the measurable state vector, u(t) ∈ Rm, t ≥ 0, denotes the control input,

A ∈ Rn×n denotes a known system matrix, B ∈ Rn×m denotes a known input matrix, δ : R+×Rn → Rm

denotes a system uncertainty, and Λ ∈ Rm×m
+ ∩Dm×m denotes an unknown control effectiveness matrix.

Here, the pair (A,B) is considered to be controllable. We now introduce a standard assumption [28–30] on

the system uncertainty parameterization.

Assumption 5.3.1 The system uncertainty (5.87) is parameterized as

δ (t,x(t)) = W T
0 (t)σ0(x(t)), x(t) ∈ Rn, (5.88)

where W0(t)∈Rs×m, t ≥ 0, is a bounded unknown weight matrix (i.e., ‖W0(t)‖F ≤w0, t ≥ 0) with a bounded

time rate of change (i.e., ‖Ẇ0(t)‖F ≤ ẇ0, t ≥ 0) and σ0 : Rn → Rs is a known basis function of the form

σ0(x(t)) = [σ01(x(t)),σ02(x(t)), . . . ,σ0s(x(t))]T that includes locally Lipschitz elements.

177



www.manaraa.com

We consider that a desired closed-loop dynamical system performance is captured by the reference

model dynamics given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0, t ≥ 0. (5.89)

In (5.89), xr(t) ∈ Rn, t ≥ 0, denotes the reference state vector, c(t) ∈ Rnc denotes the uniformly continuous

bounded command, Ar ∈ Rn×n denotes the Hurwitz reference model matrix, and Br ∈ Rn×nc denotes the

command input matrix. Using Assumption 5.3.1 in (5.87), one can write

ẋ(t) = Ax(t)+BΛ
(
u(t)+W T

0 (t)σ0(x(t))
)
, x(0) = x0, t ≥ 0. (5.90)

In what follows, without loss of any generality, we consider a nominal control law with feedback

and feedforward terms (see Section 5.3.4 for a different type of nominal control law selection using an

integrator state). Specifically, let the feedback control law be given by

u(t) =−K1x(t)+K2c(t)︸ ︷︷ ︸
un(t)

−Ŵ T(t)σ
(
x(t),c(t)

)
︸ ︷︷ ︸

ua(t)

, t ≥ 0, (5.91)

where un(t)∈Rm, t ≥ 0, and ua(t)∈Rm, t ≥ 0, are the nominal and adaptive control laws, respectively. Here,

the feedback K1 ∈Rm×n and the feedforward K2 ∈Rm×nc gains in (5.91) are selected such that Ar = A−BK1

and Br = BK2 hold. Using (5.91) in (5.90) now results in

ẋ(t) = Arx(t)+Brc(t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
, x(0) = x0, t ≥ 0, (5.92)

where σ
(
x(t),c(t)

)
,
[
σT

0
(
x(t)
)
, xT(t), cT(t)

]T ∈ Rs+n+nc , t ≥ 0, and W̃ (t), Ŵ (t)−W (t) ∈ R(s+n+nc)×m

is the weight estimation error with W (t) ,
[
W T

0 (t), (Λ
−1 −Im×m)K1, −(Λ−1− Im×m)K2

]T ∈ R(s+n+nc)×m,

t ≥ 0, being an unknown weight matrix and Ŵ (t) ∈ R(s+n+nc)×m, t ≥ 0, being an estimate of W (t), t ≥ 0.

Considering Assumption 5.3.1, note that ‖W (t)‖F ≤ w, t ≥ 0, and ‖Ẇ (t)‖F ≤ ẇ, t ≥ 0, automatically hold.

5.3.2.3 Set-Theoretic Model Reference Adaptive Control Overview

Based on the problem formulation introduced above, we now overview the standard set-theoretic

model reference adaptive control architecture [1]. We begin with the following definitions.
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Figure 5.44: Graphical representation of φ(‖z‖H) and φd(‖z‖H) in Remark 5.3.1.

Definition 5.3.1 For z∈Rp and H ∈Rp×p
+ , φ(‖z‖H), φ : R→R, is called a generalized restricted potential

function (generalized barrier Lyapunov function) on the set

Dε , {z : ‖z‖H ∈ [0,ε)}, (5.93)

with ε ∈ R+ being a-priori, user-defined constant, when the following statements hold [1]: i ) If ‖z‖H = 0,

then φ(‖z‖H) = 0. ii ) If z ∈ Dε and ‖z‖H 6= 0, then φ(‖z‖H) > 0. iii ) If ‖z‖H → ε , then φ(‖z‖H)→ ∞.

iv ) φ(‖z‖H) is continuously differentiable on Dε . v ) If z ∈ Dε , then φd(‖z‖H) > 0, where φd(‖z‖H) ,

dφ(‖z‖H)/d‖z‖2
H. vi ) If z ∈ Dε , then 2φd(‖z‖H)‖z‖2

H−φ(‖z‖H)> 0.

Remark 5.3.1 As discussed in [2], a candidate generalized restricted potential function satisfying all the

conditions given in Definition 5.3.1 has the form φ(‖z‖H) = ‖z‖2
H/
(
ε2−‖z‖2

H
)
, z ∈ Dε . Figure 5.44 shows

a graphical representation of this generalized restricted potential function.

Definition 5.3.2 Let Ω=
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}

be a convex hypercube in Rn, where (θ min
i ,

θ max
i ) represent the minimum and maximum bounds for the ith component of the n-dimensional parameter

vector θ . Moreover, for a sufficiently small positive constant ν , define a second hypercube as Ων =
{

θ ∈ Rn : (θ min
i +ν ≤ θi ≤ θ max

i −ν)i=1,2,··· ,n
}

, where Ων ⊂Ω. The projection operator Proj : Rn×Rn→

Rn is then defined componentwise by Proj(θ ,y) ,
(

θ max
i −θi

ν

)
yi if θi > θ max

i − ν and yi > 0, Proj(θ ,y) ,
(

θi−θ min
i

ν

)
yi if θi < θ min

i + ν and yi < 0, and Proj(θ ,y) , yi otherwise. Based on the above definition,

note that
(
θ − θ ∗

)T(Proj
(
θ ,y
)
− y
)
≤ 0, holds [30, 80]. This definition can be further generalized to

matrices as Projm(Θ,Y ) =
(
Proj(col1(Θ), col1(Y )), . . . , Proj(colm(Θ),colm(Y ))

)
, where Θ ∈ Rn×m, Y ∈
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Rn×m and coli(·) denotes ith column operator. In this case, for a given matrix Θ∗, it follows that tr
[
(Θ−

Θ∗)T(Projm(Θ,Y )−Y )
]
= ∑

m
i=1
[
coli(Θ−Θ∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))

]
≤ 0.

Following the theory presented in [1], consider next the update law for (5.91) given by

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t),c(t)

)
eT(t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (5.94)

with Ŵmax being the projection norm bound. In (5.94), γ ∈ R+ denotes the adaptation gain, e(t) , x(t)−

xr(t), t ≥ 0, denotes the system error, and P ∈ Rn×n
+ denotes a solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (5.95)

with R ∈Rn×n
+ . Since Ar is Hurwitz, it follows from converse Lyapunov theory [109, 136] that there exists a

unique positive-definite P satisfying (5.95) for a given positive-definite R. The system error dynamics and

the weight estimation error dynamics can now be written as

ė(t) = Are(t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
, e(0) = e0, t ≥ 0, (5.96)

˙̃W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t),c(t)

)
eT(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0. (5.97)

Remark 5.3.2 The update law (5.94) for the set-theoretic model reference adaptive control approach can be

derived using the energy function of the form V (e,W̃ ) = φ(‖e‖P) + γ−1tr
[
(W̃Λ1/2)T(W̃Λ1/2)

]
with

‖e(0)‖P < ε , whereDε , {e(t) : ‖e(t)‖P < ε} . From this energy function, one can calculate V̇
(
e(t),W̃ (t)

)
≤

−1
2 αV (e,W̃ )+ µ [1], where α , λmin(R)

λmax(P)
, d , 2γ−1w̃ ẇ‖Λ‖2, µ , 1

2 αγ−1w̃2‖Λ‖2 + d, and w̃ = Ŵmax +w.

One can now conclude the boundedness of V (e,W̃ ) and the closed-loop dynamical system given by (5.96)

and (5.97) as well as the strict performance bound on the system error given by ‖e(t)‖P < ε, t ≥ 0.

Note that the original set-theoretic model reference adaptive control architecture overviewed in this

section provides a strict performance guarantee by utilizing the error-dependent adaptation rate φd(‖e(t)‖P),

t ≥ 0. Since small system errors often contain high-frequency residual signal contents as discussed in

Section 5.3.1, it is practically desired to stop the adaptation process in the presence of such small errors.

This problem is addressed in the next section with a new set-theoretic model reference adaptive control

synthesis and analysis.
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5.3.3 Set-Theoretic Model Reference Adaptive Control with Dead-Zone Effect

In this section, we first utilize a new and continuous generalized restricted potential function with

a constant user-defined bound in the adaptation process such that this potential function not only stops the

adaptation process inside the dead-zone when the system error is small but also it allows the norm of the

system error to be less than a-priori, user-defined worst-case performance bound (Section 5.3.3.1). Next, we

address the case when this performance bound is desired to be time-varying and show that this dead-zone

scales its size automatically to give the designer a flexibility to control the closed-loop system performance

as desired on different time intervals (Section 5.3.3.2).

5.3.3.1 Constant User-Defined Performance Guarantees

We begin with the following new definition, which embeds a user-defined dead-zone effect into the

generalized restricted potential function in Definition 5.3.1.

Definition 5.3.3 For z ∈Rp and H ∈Rp×p
+ , ψ(‖z‖H), ψ : Rp→R, is called a shifted generalized restricted

potential function on the setDε ,Dε1∪Dε2 , whereDε1 , {z : ‖z‖H ∈ [0,ε1)} andDε2 , {z : ‖z‖H ∈ [ε1,ε2)},

0 ≤ ε1 < ε2 with ε1,ε2 ∈ R+ being a-priori, user-defined constants, if the following statements hold: i ) If

‖z‖H ≤ ε1, then ψ(‖z‖H) = 0. ii ) If z ∈ Dε2 and ‖z‖H 6= 0, then ψ(‖z‖H) > 0. iii ) If ‖z‖H → ε2, then

ψ(‖z‖H)→ ∞. iv ) ψ(‖z‖H) is continuously differentiable on Dε2 . v ) If z ∈ Dε2 , then ψd(‖z‖H)> 0, where

ψd(‖z‖H), dψ(‖z‖H)/d‖z‖2
H. vi ) If z ∈ Dε2 , then 2ψd(‖z‖H)‖z‖2

H−ψ(‖z‖H)> 0.

Remark 5.3.3 A candidate shifted generalized restricted potential function satisfying the conditions given

in Definition 5.3.3 has the form

ψ(‖z‖H),





(
‖z‖H− ε1

)2

ε
2
2 −‖z‖2

H
, if z ∈ Dε2

0, if z ∈ Dε1

(5.98)

where Dε1 , {z : ‖z‖H ∈ [0,ε1)} and Dε2 , {z : ‖z‖H ∈ [ε1,ε2)} with the partial derivative

ψd(‖z‖H),





(‖z‖H− ε1)(ε
2
2 − ε1‖z‖H)

‖z‖H
(
ε

2
2 −‖z‖2

H
)2 , if z ∈ Dε2

0, if z ∈ Dε1

(5.99)
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Figure 5.45: Graphical representation of ψ(‖z‖H) and ψd(‖z‖H) in Remark 5.3.3. Here, Dε1 denotes the
dead-zone.

with respect to ‖z‖2
H. Based on this new potential function, one can readily verify that 2ψd(‖z‖H)‖z‖2

H−

ψ(‖z‖H)> 0 for z ∈ Dε2 . A graphical representation of ψ(‖z‖H) is shown in Figure 5.45, where the region

Dε1 represents a dead-zone. Note that setting ε1 = 0 reduces this shifted generalized restricted potential

function ψ(‖z‖H) to φ(‖z‖H) in Remark 5.3.1.

Consider next the proposed update law for (5.91) given by

˙̂W (t) = γProjm
(

Ŵ (t),ψd(‖e(t)‖P)σ
(
x(t),c(t)

)
eT(t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (5.100)

with Ŵmax being the projection bound. In (5.100), γ ∈R+ denotes the adaptation gain and P ∈Rn×n
+ denotes

a solution of the Lyapunov equation given in (5.95) with R ∈ Rn×n
+ . One can now write the system error

dynamics and the weight estimation error dynamics respectively as

ė(t) = Are(t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
, e(0) = e0, t ≥ 0, (5.101)

˙̃W (t) = γProjm
(

Ŵ (t),ψd(‖e(t)‖P)σ
(
x(t),c(t)

)
eT(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0. (5.102)

The following theorem presents the main result of this section.

Theorem 5.3.1 Consider the uncertain dynamical system given by (5.87) subject to Assumption 5.3.1, the

reference model given by (5.89), and the feedback control law given by (5.91) with (5.100). If ‖e0‖P < ε2,

then the closed-loop dynamical system given by (5.101) and (5.102) are bounded, where the bound on the

system error satisfies a-priori given, user-defined worst-case performance given by

‖e(t)‖P < ε2, t ≥ 0. (5.103)
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Figure 5.46: Graphical representation of the energy function in (5.104) and the transitions between the sets
Dε1 and Dε2 . Here, Dε1 denotes the dead-zone.

Proof. To show boundedness of the closed-loop dynamical system given by (5.101) and (5.102),

consider the energy function V :Dε ×R(s+n+nc)×m→ R+ given by

V (e,W̃ ) = ψ(‖e‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
, (5.104)

where Dε , Dε1 ∪Dε2 with Dε1 , {e(t) : ‖e(t)‖P ∈ [0,ε1)} and Dε2 , {e(t) : ‖e(t)‖P ∈ [ε1,ε2)} (a graph-

ical representation of this energy function is shown in Figure 5.46). To analyze the closed-loop system

trajectories (5.101) and (5.102), we now consider two cases.

In Case 1, we first focus on the case where the initial error ‖e0‖P starts at the setDε1 , i.e. ‖e0‖P < ε1.

We assume without loss of any generality that the weight estimation is initialized at zero, i.e., Ŵ0 = 0. From

(5.98), we know that ψ(‖e(t)‖P) = 0, t ≥ 0, for e(t) ∈ Dε1 , t ≥ 0; hence, the energy function V (e,W̃ ) in the

set Dε1 can be written as

V (·) = γ
−1tr

[
(WΛ

1/2)T(WΛ
1/2)
]
. (5.105)

We now consider two subcases:
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i ) Starting from ‖e0‖P ∈ Dε1 , as long as the system error trajectory stays within the set Dε1 , the

energy function V (·) remains bounded by

V (e,W̃ )≤V1, (5.106)

where V1 , γ−1w2‖Λ‖2. Note that in this subcase, while there can be some variations in the energy function

resulting from the time-varying unknown weight matrix W (t), t ≥ 0, the key point is that V (e,W̃ ) remains

bounded, as it is also depicted in Figure 5.46.

ii) Next, assume that the error trajectory leaves from the set Dε1 to the set Dε2 at some t = tε1 . Then

right before leaving the set Dε1 at t = t
ε
−
1

, we have

V (·) =V
ε
−
1
, γ

−1tr
[
(W (t

ε
−
1
)Λ1/2)T(W (t

ε
−
1
)Λ1/2)

]
. (5.107)

In addition, from continuity of ψ(‖z‖H) in (5.98), we have ψ(ε−1 ) = ψ(ε+
1 ) = ψ(ε1) = 0. Now, one can

write the expression for the energy function V (·) at t = tε+1 as

V (·) =Vε
+
1
, γ

−1tr
[
(W (tε+1 )Λ

1/2)T(W (tε+1 )Λ
1/2)
]
. (5.108)

From (5.107), (5.108), and the continuity of the system uncertainty, W (t), t ≥ 0, we conclude that the energy

function V (·) is continuous in the whole set Dε .

Now that the error trajectory is in the set Dε2 , we have

V (e,W̃ ) = ψ(‖e‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
. (5.109)

Note that

dψ(‖e(t)‖P)

dt
=

dψ(‖e(t)‖P)

d‖e(t)‖2
P

d‖e(t)‖2
P

dt
= 2ψd(‖e(t)‖P)eT(t)Pė(t), t ≥ tε1 . (5.110)

Following the proof of Theorem 3.1 in [1], the time derivative of (5.109) along the closed-loop system

trajectories (5.101) and (5.102) is given by
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V̇
(
e(t),W̃ (t)

)
=

dψ(‖e(t)‖P)

dt
+2γ

−1trW̃ T(t) ˙̃W (t)Λ

= 2ψd(‖e(t)‖P)eT(t)Pė(t)

+2γ
−1trW̃ T(t)

(
γProjm

(
Ŵ (t),ψd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

)
−Ẇ (t)

)
Λ

≤ −1
2

αV
(
e(t),W̃ (t)

)
−α

[
ψd(‖e(t)‖P)eT(t)Pe(t)− 1

2
ψ(‖e(t)‖P)

]
+µ, t ≥ tε1 ,

(5.111)

and it follows from Definition 5.3.3 that

V̇
(
e(t),W̃ (t)

)
≤ −1

2
αV
(
e(t),W̃ (t)

)
+µ, t ≥ tε1 , (5.112)

where α , λmin(R)
λmax(P)

, d, 2γ−1w̃ ẇ‖Λ‖2, and µ , 1
2 αγ−1w̃2‖Λ‖2+d. It now follows from (5.112) that V (e,W̃ )

is upper bounded by V2 ,max
{

Vε1 ,
2µ

α

}
, where Vε1 ,V (e(tε1),W̃ (tε1)).

Thus, in both subcases i) and ii), the energy function V (e,W̃ ) is upper bounded by Vmax ,max
{

V1,

V2
}

and using (5.109) one can write ψ(‖e(t)‖P) + γ−1tr(W̃ (t)Λ1/2)T(W̃ (t)Λ1/2) ≤ Vmax, t ≥ 0; hence,

ψ(‖e(t)‖P) ≤ Vmax, t ≥ 0, which proves that the ‖e(t)‖P, t ≥ 0, never leaves the set Dε , or equivalently,

(5.103) holds.

In Case 2, next consider that the initial error ‖e0‖P starts at the set Dε2 , i.e., ε1 ≤ ‖e0‖P < ε2.

Similar to the discussion in subcase ii) of Case 1, one can obtain the time derivative of V (e,W̃ ) in (5.104)

to conclude the boundedness of the energy function and the shifted generalized restricted potential function

ψ(‖e(t)‖P), t ≥ 0, resulting in ‖e(t)‖P < ε2, t ≥ 0. Thus, the proof is now complete. �

To demonstrate the performance of the proposed adaptive control algorithm in Theorem 5.3.1, we

now present an illustrative numerical example. Consider the second-order uncertain dynamical system given

by

ẋ(t) =




0 1

0 0


x(t)+




0

1



(

Λu(t)+δ0(t,x(t))
)
, x(0) = 0, t ≥ 0, (5.113)

where x(t) =
[
x1(t) x2(t)

]T. In (5.113), δ0(t,x(t)) represents an uncertainty of the form

δ0(t,x(t)) = α1 sin(t)+α2x1 +α3x2
2, (5.114)
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with α1 = 0.5, α2 = 1, α3 = 0.25, and Λ = 0.75 represents an uncertain control effectiveness matrix. The

linear quadratic regulator theory is used to design the nominal feedback gain matrices as K1 = [2.2, 2.5]

and K2 = 2.2 in (5.91). We now apply the proposed set-theoretic model reference adaptive control with

dead-zone effect in Theorem 5.3.1, where we use the shifted generalized restricted potential function given

in Remark 5.3.3 with ε2 = 0.25 to strictly guarantee ‖x(t)− xr(t)‖P < 0.25, t ≥ 0. In addition, we set the

projection norm bound imposed on each element of the parameter estimate to Ŵmax = 2, the learning rate to

γ = 1, and we use R = 5I to calculate P from (5.95) for the resulting Ar matrix. Figures 5.47 and 5.48 show

the effects of utilizing different user-defined parameter ε1 ∈ [0,0.1] on the proposed set-theoretic model

reference adaptive control with dead-zone effect in Theorem 5.3.1. One can see from these figures that the

adaptation process stops for small system errors and the average effective adaptation rate is decreased. N

5.3.3.2 Time-Varying User-Defined Performance Guarantees

We now generalize the results in Section 5.3.3.1 to the case of time-varying user-defined perfor-

mance bounds using [2, Section 3.2]. This generalization also allows the dead-zone to automatically scale

its size on different time intervals in the light of the changes on the user-defined performance bound. To

begin with, let ζ (t) ∈Rn, t ≥ 0, be a signal (see below) that modifies the reference model given by (5.89) to

allow the enforcement of user-defined time-varying performance bounds. Specifically, consider the modified

reference model given by

ẋrm(t) = Arxrm(t)+Brc(t)+ζ (t), xrm(0) = xr0, t ≥ 0, (5.115)

where xrm(t) ∈ Rn, t ≥ 0, is the modified reference state vector. Next, consider the modified system error

em(t) , x(t)− xrm(t), t ≥ 0, and the error transformation eξ (t) = ξ (t)em(t), t ≥ 0, where ξ (t) ∈ R+, t ≥ 0,

is a user-defined scalar for adjusting the worst-case performance bound (see Theorem 5.3.2) such that both

ξ (t) and its time-derivative are smooth and bounded.

Using the shifted generalized restricted potential function candidate given in Remark 5.3.3, we now

propose the update law for (5.91) given by

˙̂W (t) = γProjm
(

Ŵ (t),ψd(‖eξ (t)‖P)σ
(
x(t),c(t)

)
ξ (t)eT

ξ
(t)PB

)
, Ŵ (0) = Ŵ0, t ≥ 0, (5.116)
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with Ŵmax being the projection bound. Using (5.92) and (5.115), one can write the modified system error

dynamics as
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Figure 5.47: Closed-loop system performance with the set-theoretic model reference adaptive control
architecture in Theorem 5.3.1 when ε1 ∈ [0,0.1] (blue to red) and ε2 = 0.25.
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Figure 5.48: History of the system error trajectories and the effective learning rates with the set-theoretic
model reference adaptive control architecture in Theorem 5.3.1 when ε1 ∈ [0,0.1] (blue to red) and ε2 = 0.25.
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ėm(t) = Arem(t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
−ζ (t), em(0) = em0, t ≥ 0, (5.117)

where it follows from the considered error transformation given by eξ (t) = ξ (t)em(t), t ≥ 0, that

ėξ (t) = ξ̇ (t)em(t)+Areξ (t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
ξ (t)−ξ (t)ζ (t), eξ (0) = eξ 0, t ≥ 0. (5.118)

Next, let ζ (t), ξ̇ (t)ξ−1(t)em(t), t ≥ 0, which puts (5.118) into the form given by

ėξ (t) = Areξ (t)−ξ (t)BΛW̃ T(t)σ
(
x(t),c(t)

)
, eξ (0) = eξ 0, t ≥ 0. (5.119)

Finally the weight estimation error dynamics can be also written as

˙̃W (t) = γProjm
(
Ŵ (t),ψd(‖eξ (t)‖P)σ

(
x(t),c(t)

)
ξ (t)eT

ξ
(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, t ≥ 0. (5.120)

The following theorem presents the main result of this section.

Theorem 5.3.2 Consider the uncertain dynamical system given by (5.87) subject to Assumption 5.3.1, the

modified reference model given by (5.115), and the feedback control law given by (5.91) with (5.116). If

‖em0‖P < ε2
ξ (0) , then the closed-loop dynamical system given by (5.119) and (5.120) are bounded, where the

bound on the system error satisfies a-priori given, user-defined worst-case performance given by

‖em(t)‖P <
ε2

ξ (t)
, t ≥ 0. (5.121)

Proof. The error dynamics given by (5.119) and (5.120) is similar to the error dynamics given by

(5.96) and (5.97). Since the condition given by ‖em0‖P < ε2
ξ (0) can be equivalently written as ‖eξ 0‖P < ε2,

then based on the energy function V :Dε ×R(s+n+nc)×m→ R+ given by

V (eξ ,W̃ ) = ψ(‖eξ‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
, (5.122)

where Dε , Dε1 ∪Dε2 with Dε1 , {eξ (t) : ‖eξ (t)‖P ∈ [0,ε1)} and Dε2 , {eξ (t) : ‖eξ (t)‖P ∈ [ε1,ε2)}, it

identically follows from the proof of Theorem 5.3.1 that ‖eξ (t)‖P < ε2. Clearly, this yields to (5.121) using

the error transformation eξ (t) = ξ (t)em(t). Hence, the proof is now complete. �
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Remark 5.3.4 Based on the results shown in Theorem 5.3.2, the user-defined function ξ (t), t ≥ 0, can be

chosen such that the adaptation process stops when ‖em(t)‖P < ε1
ξ (t) , while enforcing the worst-case time-

varying performance bound ‖em(t)‖P < ε2
ξ (t) . Furthermore, we also note that if the time rate of change

of ξ (t), t ≥ 0, is small, then the modified reference model approximately behaves as the ideal, unmodified

reference model. We refer to Remarks 3.2 and 3.3 of [2] for more details on how the modified reference

model in (5.115) can behave close to the ideal, unmodified reference model in (5.89) with proper selection

of ξ (t), t ≥ 0.

Remark 5.3.5 The proposed adaptive control architecture of this section for enforcing time-varying perfor-

mance guarantees with dead-zone effect can also be viewed as an extension of [2, Theorem 3.2] that does

not consider dead-zone. In addition, one can also utilize the approach in [2, Theorem 3.1] for enforcing

the time-varying bound ε(t), t ≥ 0, with the required additional assumption that λmin(PBΛBTP) is nonzero.

Yet, for the case where λmin(PBΛBTP) is zero, one can readily show that if λmin(R)−2ελmax(P)> 0 holds

with ε , max
t∈R+

ε̇(t)
ε(t) , then the result of [2, Theorem 3.1] still holds and the user-defined time-varying system

performance bound ε(t) can be enforced on the system error trajectories (i.e., ‖e(t)‖P < ε(t)).

Consider the same numerical example in Section 5.3.3.1 with the same nominal feedback gain

matrices. We now apply the proposed set-theoretic model reference adaptive control with dead-zone effect in

Theorem 5.3.2, where we use the candidate shifted generalized restricted potential function given in Remark

5.3.3 with ε2 = 1. We also select the user-defined function ξ (t), t ≥ 0, such that its inverse (ξ−1(t), t ≥ 0)

changes smoothly from 0.25 to 0.15. This selection allows more deviation at the beginning of the applied

command signal (ξ−1
max = 0.25) and then it enforces a tighter bound (ξ−1

min = 0.15) in order to obtain a closer

tracking performance by guaranteeing ‖x(t)− xrm(t)‖P < ξ−1(t), t ≥ 0. In addition, we set the projection

norm bound imposed on each element of the parameter estimate to Ŵmax = 2, the learning rate to γ = 1, and

we use R= 5I to calculate P from (5.95) for the resulting Ar matrix. Figures 5.49 and 5.50 show the effects of

utilizing different user-defined parameter ε1 ∈ [0,0.4] on the proposed set-theoretic model reference adaptive

control with dead-zone effect in Theorem 5.3.2. One can see from these figures that the adaptation process

stops for small system errors and, once again, the average effective adaptation rate is decreased. N

Remark 5.3.6 The proposed set-theoretic model reference adaptive control architectures with dead-zone

effect presented in Sections 5.3.3.1 and 5.3.3.2 utilize user-defined performance bounds ε1 and ε2 such that

the adaptation process stops when the system error is small. Furthermore, the continuous nature of the
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proposed shifted generalized restricted potential function avoids, for example, chattering during transitions

to/from the dead-zone. We should also note that while the system error trajectory can go between the sets
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Figure 5.49: Closed-loop system performance with the set-theoretic model reference adaptive control
architecture in Theorem 5.3.2 when ε1 ∈ [0,0.4] (blue to red) and ε2 = 1.
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Figure 5.50: History of the system error trajectories and the effective learning rates with the set-theoretic
model reference adaptive control architecture in Theorem 5.3.2 when ε1 ∈ [0,0.4] (blue to red) and ε2 = 1.
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Dε1 and Dε2 multiple times, the above arguments hold for all these transitions and the energy functions

given by (5.104) and (5.122) are guaranteed to be bounded for all time. A graphical representation of these

transitions is also depicted in Figure 5.46.

5.3.4 Experimental Verification

We now present an experimental study on the Quanser AERO platform in dual-rotor helicopter

configuration1 [3] (see Figure 5.51). To begin with the control design, consider the (linearized) model of the

this testbed given by

Jpθ̈(t)+Dpθ̇(t)+Kspθ(t) = τp(t), θ(0) = θ0, t ≥ 0, (5.123)

Jyψ̈(t)+Dyψ̇(t) = τy(t), ψ(0) = ψ0, t ≥ 0. (5.124)

In (5.123) and (5.124), θ(t), t ≥ 0, is the pitch angle (in radians), ψ(t), t ≥ 0, is the yaw angle (in radians),

Jp (respectively, Jy) is the total moment of inertia about the pitch (respectively, yaw) axis, Dp (respectively,

Dy) is the damping about the pitch (respectively, yaw) axis, and Ksp is the stiffness about the pitch axis. The

control torques acting on the pitch and yaw axes satisfy

τp(t) = KppVp(t)+KpyVy(t), t ≥ 0, (5.125)

τy(t) = KypVp(t)+KyyVy(t), t ≥ 0. (5.126)

Figure 5.51: Quanser AERO platform [3].

1We have previously evaluated the set-theoretic model reference adaptive control architecture on this aerospace platform in
[137] without the dead-zone effect.
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In (5.125) and (5.126), Vp(t), t ≥ 0, and Vy(t), t ≥ 0, are the motor voltages applied to the pitch and yaw

rotors, respectively, Kpp (respectively, Kyy) is the torque thrust gain from the pitch (respectively, yaw) rotor,

and Kpy (respectively, Kyp) is the cross-torque thrust gain acting on the pitch (respectively, yaw) from the

yaw (respectively, pitch) rotor.

Using (5.123), (5.124), (5.125) and (5.126), one can write the system dynamics in the state space

form given by

ẋp(t) = Apxp(t)+BpΛu(t), xp(0) = xp0, t ≥ 0, (5.127)

with the corresponding matrices

Ap =




0 0 1 0

0 0 0 1

−Ksp/Jp 0 −Dp/Jp 0

0 0 0 −Dy/Jy



, Bp =




0 0

0 0

Kpp/Jp Kpy/Jp

Kyp/Jy Kyy/Jy



, (5.128)

where xp(t) = [θ(t),ψ(t), θ̇(t), ψ̇(t)]T ∈ R4, t ≥ 0, denotes the measurable state vector, Λ denotes an

introduced uncertain control effectiveness matrix, and u(t) = [Vp(t),Vy(t)]T ∈ R2, t ≥ 0, denotes the control

input. The system parameters are obtained from the Quanser AERO user manual as Jp = 0.0219 (kgm2),

Jy = 0.0220 (kgm2), Dp = 0.0071 (kgm2s−1), Dy = 0.0220 (kgm2s−1), Kpp = 0.0011 (kgm2s−2V−1),

Ksp = 0.0375 (kgm2s−2), Kyy = 0.0022 (kgm2s−2V−1), Kyp =−0.0027 (kgm2s−2V−1), and Kpy = 0.0021

(kgm2s−2V−1).

To address command following for the pitch and yaw angles, let c(t) = [cθ (t),cψ(t)]T ∈ R2, t ≥ 0,

be given bounded piecewise continuous commands and xc(t)∈R2, t ≥ 0, be the integrator state that satisfies

the dynamics given by

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0, t ≥ 0, with Ep =




1 0 0 0

0 1 0 0


 . (5.129)

Next, (5.127) can be augmented with (5.129) as

ẋ(t) = Ax(t)+BΛu(t)+Brc(t), x(0) = x0, t ≥ 0, (5.130)

192



www.manaraa.com

where x(t), [xT
p (t), xT

c (t)]
T ∈ R6, t ≥ 0, is the augmented state vector, x0 , [xT

p0,x
T
c0]

T, and

A ,




Ap 04×2

Ep 02×2


 ∈ R6×6, (5.131)

B ,

[
BT

p 0T
2×2

]T

∈ R6×2, (5.132)

Br ,

[
0T

4×2 −I2×2

]T

∈ R6×2. (5.133)

We now consider the feedback control law given by

u(t) = un(t)+ua(t), t ≥ 0, (5.134)

where un(t) ∈ R2, t ≥ 0, and ua(t) ∈ R2, t ≥ 0, are the nominal and adaptive control laws, respectively.

Moreover, linear quadratic regulator theory is used to design the nominal controller gain matrix with the

weighting matrices as Q = diag([2,2,0,0,50,50]) to penalize x(t) and R = 0.001I2×2 to penalize u(t),

resulting in

un(t) =−Kx(t), t ≥ 0, (5.135)

with

K =




82.85 −124.21 29.70 −32.29 125.18 −185.28

117.26 78.55 38.95 19.04 185.28 125.18


 , (5.136)

such that Ar , A−BK is Hurwitz, K ∈ R2×6. Using (5.134) and (5.135) in (5.130) yields

ẋ(t) = Arx(t)+Brc(t)+BΛ
[
ua(t)+W T

σ
(
x(t)
)]
, x(0) = x0, t ≥ 0, (5.137)

where W , (Λ−1− I2×2) ∈R2×2 is an unknown weight matrix and σ
(
x(t)
)
, Kx(t) ∈R2, t ≥ 0, is a known

basis function. In this experimental study, a 30 degree yaw maneuver is considered as the control objective2,

the pitch and yaw motor voltages saturate at 24 V, and the uncertain control effectiveness matrix is set to

Λ = 0.1I2×2 (that yields W = 9I2×2).

2From a practical point of view, we pass the desired command through a low-pass filter to generate a smooth yaw command.
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Figure 5.52 shows the performance of the nominal controller for command following in the ab-

sence of the system uncertainty (i.e., Λ = I2×2 that yields W = 02×2). Introducing the uncertain control

effectiveness matrix, it is evident from Figure 5.53 that the nominal controller alone yields to an unstable

closed-loop dynamical system performance. For all the adaptive controllers discussed below, we use a

rectangular projection operator and set the upper and lower projection bounds imposed on each element of

the parameter estimate respectively to Ŵupper = 16I2×2 and Ŵlower = 2I2×2. Moreover, we use R = 1.5I6×6 to

calculate P from (5.95) for the resulting Ar matrix.

5.3.4.1 Evaluation of Standard Model Reference Adaptive Control Method

We begin with evaluating the performance of a standard model reference adaptive control method

(i.e., φd(‖e(t)‖P) ≡ 1 in (5.94)); see, for example, [16, 17, 28–30]. Figure 5.54 present the command

following performance of the adaptive controller with γ = 1, where the evolution of norm of the system

error and the weight estimation are shown in Figures 5.55. Considering that one designs to achieve a

close tracking of the reference system such that the norm of the system error be less than 0.5, this adaptive

controller is not able to achieve this requirement with γ = 1. In order to obtain a better performance, a control

designer can increase the adaptation gain. Figures 5.56 and 5.57 show the command following performance
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Figure 5.52: Command following performance with the nominal controller in the absence of the system
uncertainty.
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of the adaptive controller with γ = 5, where the desired requirement is still not met. By increasing the

adaptation rate further to γ = 40 one can obtain the desired tracking performance as it can be seen from
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Figure 5.53: Command following performance with the nominal controller in the presence of the system
uncertainty.
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Figure 5.54: Command following performance with the standard model reference adaptive controller (i.e.,
φd(‖e(t)‖P)≡ 1 in (5.94)) using γ = 1.
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Figures 5.58 and 5.59. Note that, even though satisfactory results are obtained through an ad-hoc tuning

process that results in γ = 40, this performance is not guaranteed for different system uncertainties.
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Figure 5.55: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), t ≥ 0, and
the effective learning rate γ with the standard model reference adaptive controller (i.e., φd(‖e(t)‖P) ≡ 1 in
(5.94)) using γ = 1.

0 5 10 15 20 25 30 35
-40

-20

0

20

40

ψ
(t
)

cψ(t)
ψ(t)
ψr(t)

0 5 10 15 20 25 30 35
-10

-5

0

5

10

θ
(t
)

cθ(t)
θ(t)
θr(t)

0 5 10 15 20 25 30 35

t (sec)

-20

0

20

V
p
(t
),

V
y
(t
)

Vp(t)
Vy(t)

Figure 5.56: Command following performance with the standard model reference adaptive controller (i.e.,
φd(‖e(t)‖P)≡ 1 in (5.94)) using γ = 5.
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Figure 5.57: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), t ≥ 0, and
the effective learning rate γ with the standard model reference adaptive controller (i.e., φd(‖e(t)‖P) ≡ 1 in
(5.94)) using γ = 5.
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Figure 5.58: Command following performance with the standard model reference adaptive controller (i.e.,
φd(‖e(t)‖P)≡ 1 in (5.94)) using γ = 40.
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Figure 5.59: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), t ≥ 0, and
the effective learning rate γ with the standard model reference adaptive controller (i.e., φd(‖e(t)‖P) ≡ 1 in
(5.94)) using γ = 40.

5.3.4.2 Evaluation of Standard and Proposed Set-Theoretic Model Reference Adaptive Control
Methods with Constant Performance Bounds

We first demonstrate the standard set-theoretic model reference adaptive controller for enforcing

strict performance guarantees by utilization of the system error-dependent learning rate φd(||e(t)||P). Specif-

ically, we use the generalized restricted potential function given in Section 5.3.2.3 with ε = 0.5 and we set

the constant learning rate to γ = 5. Figure 5.60 shows the closed-loop dynamical system performance

with the standard set-theoretic model reference adaptive controller concisely overviewed in Section 5.3.2.3,

where Figure 5.61 shows the norm of the system error trajectories, the evolution of the weight estimate

Ŵ (t), t ≥ 0, and the evolution of the effective learning rate. As expected from these figures, the adaptation

is always active with the standard set-theoretic method.

We next apply the proposed set-theoretic model reference adaptive control with dead-zone effect

in Theorem 5.3.1, where we use the new shifted generalized restricted potential function given in Remark

5.3.3 with ε1 = 0.15 and ε2 = 0.5 to guarantee ‖x(t)−xr(t)‖P < 0.5, t ≥ 0. It can be seen in Figure 5.62 that

desired performance is obtained and the evolution of the norm of the system error trajectories, the evolution

of the weight estimate Ŵ (t), t ≥ 0, and the effective learning rate are depicted in Figure 5.63. The key
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feature of the proposed control algorithm in practical applications is evident from Figure 5.63. Specifically,

the proposed set-theoretic model reference adaptive control with dead-zone effect stops the adaptation in the

set Dε1 .
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Figure 5.60: Command following performance with the standard set-theoretic model reference adaptive
controller [1].
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Figure 5.61: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), t ≥ 0, and
the effective learning rate γφd(·) with the standard set-theoretic model reference adaptive controller [1].
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Figure 5.62: Command following performance with the proposed controller in Theorem 5.3.1.
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Figure 5.63: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), t ≥ 0, and
the effective learning rate γψd(·) with the proposed controller in Theorem 5.3.1.
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5.3.4.3 Evaluation of Standard and Proposed Set-Theoretic Model Reference Adaptive Control
Methods with Time-Varying Performance Bounds

We first demonstrate the performance of the standard set-theoretic model reference adaptive con-

troller with time-varying performance bound in [2, Theorem 3.2], we use the shifted generalized restricted

potential function given in Remark 5.3.3 with ε1 = 0 and we set the constant learning rate to γ = 5.

Furthermore, we set ε2 = 1 and choose the user-defined function ξ (t), t ≥ 0, such that its inverse (ξ−1(t), t ≥

0) changes smoothly from 0.5 to 0.25 to allow larger deviation at the beginning of the applied command

signal (ξ−1
max = 0.5) and then it enforces a tighter bound (ξ−1

min = 0.25) to obtain a closer tracking performance

thorough ‖x(t)−xrm(t)‖P < ξ−1(t), t ≥ 0. Figure 5.64 shows the closed-loop dynamical system performance

with the standard set-theoretic adaptive controller with time-varying performance bound, where Figure 5.65

shows the norm of the system error trajectories, the evolution of the weight estimate Ŵ (t), t ≥ 0, and the

evolution of the effective learning rate. Once again, the adaptation is always active as it can be seen from

these figures.

We finally apply the proposed set-theoretic model reference adaptive control with dead-zone effect

in Theorem 5.3.2, where we use the new shifted generalized restricted potential function given in Remark

5.3.3 with ε2 = 1 and ε1 = 0.3 such that there is always 30% dead-zone effect in the adaptation process. We
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Figure 5.64: Command following performance with the standard set-theoretic model reference adaptive
controller with time-varying bound [2].
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also select the user-defined function ξ (t), t ≥ 0, such that its inverse (ξ−1(t), t ≥ 0) changes smoothly from

0.5 to 0.25 as explained above to enforce the performance guarantee through ‖x(t)− xrm(t)‖P < ξ−1(t),

t ≥ 0. It can be seen in Figure 5.66 that desired performance is obtained and the evolution of the norm
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Figure 5.65: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), t ≥ 0, and
the effective learning rate γξ (t)ψd(·) with the standard set-theoretic model reference adaptive controller
with time-varying bound [2].
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Figure 5.66: Command following performance with the proposed controller in Theorem 5.3.2.
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Figure 5.67: Norm of the system error trajectories, the evolution of the weight estimation Ŵ (t), t ≥ 0, and
the effective learning rate γξ (t)ψd(·) with the proposed controller in Theorem 5.3.2.

of the system error trajectories, the evolution of the weight estimate Ŵ (t), t ≥ 0, and the effective learning

rate are depicted in Figure 5.67. Once again, the key feature of the proposed control algorithm in practical

applications is evident from Figure 5.67, where the proposed set-theoretic model reference adaptive control

with dead-zone effect stops the adaptation in the set Dε1 .

5.3.5 Conclusion

In the presence of small system errors, which often contain high-frequency residual content of

exogenous disturbances and/or measurement noise, it is a widely-adopted practice to stop the adaptation

process in applications of model reference adaptive control algorithms. Specifically, standard model refer-

ence adaptive control architectures with fixed learning rates generally use the common dead-zone function

to stop their adaptation in a straightforward fashion; however, they cannot enforce user-defined worst-

case performance bounds on the closed-loop uncertain dynamical system trajectories, which is necessary

for safety-critical applications. While set-theoretic adaptive control architectures have the capability to

enforce such bounds, stopping their adaptation process without still violating these worst-case bounds is

not a theoretically trivial task. To this end, we presented a set-theoretic model reference adaptive control
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architecture with dead-zone effect. Based on a continuous shifted generalized restricted potential function,

in particular, we analytically showed that the proposed architecture not only stops the learning process

inside the dead-zone but also allows the norm of the system error to be less than a user-defined constant

or time-varying performance bound. In addition to the provided new theoretical findings, we efficacy of

the proposed technique was also demonstrated through illustrative numerical examples and, importantly,

through an aerospace testbed experimentation.

5.4 Human-in-the-Loop Systems with Inner and Outer Feedback Control Loops: Adaptation, Sta-
bility Conditions, and Performance Constraints4

In this paper, we focus on human-in-the-loop physical systems with inner and outer feedback control

loops. Specifically, our problem formulation considers that inner loop control laws use a model reference

adaptive control approach to suppress the effect of system uncertainties such that the overall physical system

operates close to its ideal behavior as desired in the presence of adverse conditions due to failures and/or

modeling inaccuracies. Moreover, we consider that the outer loop control laws exist owing to employing

either sequential loop closure and/or high-level guidance methods. As it is true in practice, in addition,

humans are considered to inject commands directly to the outer loop dynamics in response to the changes

in the physical system, where the outer loop commands affect inner loop dynamics in response to the

commands received from the humans as well as in response to the changes in the physical system.

The presence of humans can result in system instability, even when the resulting physical system

augmented with inner and outer feedback control loops yield to stable trajectories in the absence of humans.

This paper addresses this problem by proving a sufficient stability condition for the overall physical system

with human dynamics modeled as a linear time-invariant system with human reaction time-delay, where this

condition does not depend on system uncertainties similar to our recent theoretical results. Furthermore,

inner loop system errors during the transient phase of adaptively suppressing system uncertainties can

severely affect the human-outer loop interactions. We also address this issue by utilizing a recently pro-

posed set-theoretic model reference adaptive control approach at the inner loop for enforcing a user-defined

performance constraint on the norm of the system error trajectories, where we show how the selection of this

constraint affects the overall physical system. Finally, the efficacy of our results is demonstrated through an

illustrative numerical example for an adaptive flight control application with a Neal-Smith pilot model.

4This section has been submitted to the AIAA Guidance, Navigation, and Control Conference.
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5.4.1 Introduction

This paper focuses on human-in-the-loop physical systems with inner and outer feedback control

loops. Building on our recent results documented in [138], our problem formulation considers that inner

loop control laws use a model reference adaptive control approach to suppress the effect of system uncer-

tainties such that the overall physical system operates close to its ideal behavior in the presence of adverse

conditions due to failures and/or modeling inaccuracies (we refer to [138] and references therein for relevant

literature). Specifically, the model reference adaptive control approach of this paper has the capability to

enforce performance constraints on the transient system performance (see below), unlike the results in [138].

Moreover, it theoretically augments a general nominal dynamic compensator structure; that is, the nominal

control law utilized in [138] becomes a special case of the nominal dynamic compensator considered in this

paper. Here, we also explicitly consider outer loop control laws within our problem formulation. From an

application standpoint, these outer loop control laws can exist owing to employing either sequential loop

closure and/or high-level guidance methods. While the results in [138] can consider entire system dynamics

to enforce objectives achieved by such methods, it is well-known that sequential loop closure approaches

can ease the control design task through several low-order control laws (see, for example, [139, 140] and

references therein) and/or one would like to simply add a guidance algorithm to an existing inner loop

feedback control architecture.

As it is true in practice, humans are considered to inject commands directly to the outer loop

dynamics in response to the changes in the physical system within our problem formulation, where the

outer loop commands affect inner loop dynamics in response to the commands received from the humans

as well as in response to the changes in the physical system. In particular, the presence of humans can

result in system instability especially due to human reaction time-delays (see, for example, [138, 141–145]

and references therein), even when the resulting physical system augmented with inner and outer feedback

control loops yield to stable trajectories in the absence of humans. In this paper, we address this problem

by proving a sufficient stability condition for the overall physical system with human dynamics modeled

as a linear time-invariant system with human reaction time-delay, where this condition does not depend

on system uncertainties similar to the results in [138]. Furthermore, inner loop system errors during the

transient phase of adaptively suppressing system uncertainties can severely affect the human-outer loop
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interactions. This paper also addresses this issue by utilizing a recent model reference adaptive control

approach discussed next.

Specifically, with conventional model reference adaptive control algorithms like the one adopted in

[138], only a conservative bound on the system errors can be theoretically developed that depends on the

bound on the system uncertainties. Thus, without a complete knowledge of the upper bound on the system

uncertainties, the adaptively controlled overall system may exhibit unsatisfactory performance (i.e., large

system error signal) resulting in poor human-physical system interaction, unless a high adaptation gain is

used for all time that may not be practically desirable. To overcome this limitation of conventional model

reference adaptive control laws, the authors recently proposed the set-theoretic model reference adaptive

control architecture in [1] for achieving time-invariant user-defined performance bounds, where in [2, 108]

this framework was further extended to guarantee time-varying user-defined performance bounds. The

generalizations of the set-theoretic model reference adaptive control architecture to the unstructured system

uncertainties, actuator failures, actuator dynamics were then studied in [1, 93, 101, 102]. Within the scope

of this paper, we use this new architecture in [1] for enforcing a user-defined performance constraint on

the norm of the system error trajectories, where we explicitly show how the selection of this constraint

affects the overall physical system. Finally, the efficacy of the overall human-in-the-loop physical system

architecture of this paper with inner and outer feedback control loops is demonstrated through an illustrative

numerical example for an adaptive flight control application with a Neal-Smith pilot model.

The organization of this paper is as follows. Section 5.4.2 provides the mathematical preliminaries.

Section 5.4.3 presents the problem formulation, where Section 5.4.4 shows the stability and performance

guarantees analysis for the overall human-in-the-loop physical system architecture. Section 5.4.5 presents

the aforementioned illustrative numerical example, where the conclusions are finally drawn in Section 5.4.6.

5.4.2 Mathematical Preliminaries

5.4.2.1 Notation

The notation used throughout this paper is consistent with our prior work [138]. Specifically, R

denotes the set of real numbers, C denotes the set of complex numbers, Rn denotes the set of n× 1 real

column vectors, Rn×m denotes the set of n×m real matrices, R+ denotes the set of positive real numbers,

Rn×n
+ denotes the set of n× n positive definite matrices, Dn×n denotes the set of n× n real matrices with

diagonal scalar entries, 0n×n denotes the n× n zero matrix, and “,” denotes equality by definition. In
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addition, we write (·)T for the transpose, (·)−1 for the inverse, tr(·) for the trace, ‖·‖2 for the Euclidean norm,

‖ · ‖F for the Frobenius norm, and ‖A‖2 ,
√

λmax(ATA) for the induced 2-norm of the matrix A ∈ Rn×m.

5.4.2.2 Necessary Definitions

The following definitions are used in the main results of this paper.

Definition 5.4.1 ([30, 80]) Let Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}

be a convex hypercube in Rn,

where (θ min
i , θ max

i ) represent the minimum and maximum bounds for the ith component of the n-dimensional

parameter vector θ . In addition, for a sufficiently small positive constant ν , a second hypercube is defined

by Ων =
{

θ ∈ Rn : (θ min
i +ν ≤ θi ≤ θ max

i −ν)i=1,2,··· ,n
}

, where Ων ⊂ Ω. The projection operator Proj :

Rn×Rn → Rn is then defined componentwise by Proj(θ ,y) ,
(

θ max
i −θi

ν

)
yi, if θi > θ max

i − ν and yi > 0,

Proj(θ ,y) ,
(

θi−θ min
i

ν

)
yi, if θi < θ min

i + ν and yi < 0, and Proj(θ ,y) , yi, otherwise, where y ∈ Rn [30].

Based on this definition and θ ∗ ∈Ων , note that

(θ −θ
∗)T (Proj(θ ,y)− y)≤ 0, (5.138)

holds for θ ∈Ω and y∈Rn[30, 80]. This definition can be further generalized to matrices as Projm(Θ,Y ) =
(
Proj(col1(Θ), col1(Y )), . . . , Proj(colm(Θ),colm(Y ))

)
, where Θ ∈ Rn×m, Y ∈ Rn×m and coli(·) denotes ith

column operator. In this case, for a given matrix Θ∗ it follows from (5.138) that tr
[
(Θ−Θ∗)T(Projm(Θ,Y )−

Y )
]
= ∑

m
i=1
[
coli(Θ−Θ∗)T(Proj(coli(Θ),coli(Y ))− coli(Y ))

]
≤ 0.

Definition 5.4.2 ([1]) Let ‖z‖H =
√

zTHz be a weighted Euclidean norm, where z ∈ Rp is a real column

vector and H ∈ Rp×p
+ . We define φ(‖z‖H), φ : R→ R, to be a generalized restricted potential function

(generalized barrier Lyapunov function) on the set

Dε , {z : ‖z‖H ∈ [0,ε)}, (5.139)

with ε ∈ R+ being a-priori, user-defined constant, if the following statements hold [1]: i) If ‖z‖H = 0, then

φ(‖z‖H) = 0. ii) If z∈Dε and ‖z‖H 6= 0, then φ(‖z‖H)> 0. iii) If ‖z‖H→ ε , then φ(‖z‖H)→∞. iv) φ(‖z‖H)

is continuously differentiable on Dε . v) If z ∈ Dε , then φd(‖z‖H) > 0, where φd(‖z‖H) , dφ(‖z‖H)/d‖z‖2
H.

vi) If z ∈ Dε , then 2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0.
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5.4.3 Problem Formulation

In this paper, we consider a human-machine system in which the machine behavior y(t) is observed

by the human. Based on this observation, the human then generates a decision and commands the actuator

for tracking purposes. To improve the overall tracking performance with the human, instead of direct

interaction of the human with the machine, we consider outer and inner control loops with which human

commands are properly delegated to the machine to stabilize the error dynamics. To start the control design,

consider the block diagram representation of the human-in-the-loop physical systems with inner and outer

feedback control loops as given in Figure 5.68. Note that in this setting, the human input (i.e., the reference

command) is what the human aims to achieve in a given task and the uncertain dynamical system is the

physical system on which this task is being performed. The outer loop architecture then uses the initial

command constructed by the human loop and generates the command signal that is fed into the inner loop.

The inner loop architecture includes the uncertain dynamical system as well as the model reference adaptive

controller components (i.e., the reference model, the parameter adjustment mechanism, and the controller).

In what follows, we provide detailed discussion for each of these three loops. Specifically, we

consider the uncertain dynamics representing a physical system given by

ẋ∗(t) =




Ap 0np×nφp

Gp Fp


x∗(t)+




Bp

0T
nc×m



(

Λu(t)+δp(xp(t))
)
, (5.140)

where Ap ∈ Rnp×np , Bp ∈ Rnp×m, Fp ∈ Rnφp×nφp , and Gp ∈ Rnφp×np are the system matrices, u(t) ∈ Rm is the

control input, δp : Rnp →Rm is a system uncertainty, Λ ∈Rm×m
+ ∩Dm×m is an unknown control effectiveness

matrix, and we assume that the overall system is controllable. Letting x∗(t) = [xT
p (t),φ

T
p (t)]

T ∈ Rnp+nφp ,

where xp(t) ∈ Rnp is the primary measurable state vector and φp ∈ Rnφp is the secondary measurable state

vector, one can equivalently write (5.140) as

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(xp(t)), xp(0) = xp0, (5.141)

φ̇p(t) = Fpφp(t)+Gpxp(t), φp(0) = φp0. (5.142)
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Figure 5.68: Block diagram of the human-in-the-loop model reference adaptive control architecture.

Specifically, we design the controller at the inner loop based on the structure given by (5.141). We then

utilize (5.142) to design an outer loop dynamic compensator for generating the command signal that is fed

to the inner loop.

5.4.3.1 Inner Loop Architecture

At the inner loop architecture, we consider the uncertain dynamical system given in (5.141) and

assume that the system uncertainty δp(xp(t)) is parameterized as

δp(xp(t)) = W T
p (t)σp(xp(t)), (5.143)

where Wp(t) ∈ Rs×m is a bounded unknown weight matrix (i.e., ‖W0(t)‖F ≤ w0) with a bounded time rate

of change (i.e., ‖Ẇ0(t)‖F ≤ ẇ0) and σp : Rnp → Rs is a known basis function of the form σp(xp(t)) =

[σp1(xp(t)),σp2(xp(t)), . . . ,σps(xp(t))]T.

To address command following at the inner loop architecture, let xc(t) ∈ Rnc , be the dynamic

compensator state satisfying

ẋc(t) = Acxc(t)+Bcep(t), xc(0) = xc0, (5.144)

zc(t) = Ccxc(t)+Dcep(t), (5.145)

where Ac ∈ Rnc×np , Bc ∈ Rnc×ny , Cc ∈ Rnz×nc , Dc ∈ Rnz×ny , z(t) ∈ Rz is the output of the dynamic compen-

sator, ep(t), y(t)− c(t), and y(t),Cpxp(t) with Cp ∈ Rny×np . We now consider the inner loop control law

given by
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u(t) = un(t)+ua(t), (5.146)

where un(t) ∈ Rm and ua(t) ∈ Rm are the nominal and adaptive control laws, respectively. Furthermore, let

the nominal control law be

un(t) =−Kpxp(t)−Kczc(t), (5.147)

with Kp ∈ Rm×np and Kc ∈ Rm×nz . Now, (5.141) can be augmented with (5.144) as

ẋ(t) = Arx(t)+Brc(t)+BΛ
(
ua(t)+W T(t)σ

(
x(t),c(t)

))
, x(0) = x0, (5.148)

where x(t) , [xT
p (t), xT

c (t)]
T ∈ Rn, n = np + nc, is the augmented state vector, W (t) ,

[
W T

p (t), (Λ−1

−Im×m)(Kp +KcDcCp), (Λ
−1− Im×m)KcCc, −(Λ−1− Im×m)KcDc

]T ∈ R(s+n+ny)×m is an unknown (aggre-

gated) weight matrix, σ
(
x(t),c(t)

)
, [σT

p
(
xp(t)

)
,xT

p (t),x
T
c (t),c(t)]

T ∈Rs+n+ny is a known (aggregated) basis

function, x0 , [xT
p0,x

T
c0]

T,

Ar ,




Ap−BpKp−BpKcDcCp −BpKcCc

BcCp Ac


 ∈ Rn×n, (5.149)

Br ,




BpKcDc

−Bc


 ∈ Rn×ny (5.150)

B ,

[
BT

p 0T
nc×m

]T

∈ Rn×m. (5.151)

Considering (5.148), let the adaptive control law be in the form given by

ua(t) =−Ŵ T(t)σ
(
x(t),c(t)

)
, (5.152)

where Ŵ (t) ∈ R(s+n+ny)×m is the estimate of W (t). Following the set-theoretic model reference adaptive

control architecture presented in [1] (see also [1, 2, 93, 101, 102, 108]), let the update law for (5.152) be

given by

˙̂W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
, Ŵ (0) = Ŵ0 (5.153)

210



www.manaraa.com

with Ŵmax being the projection norm bound. In (5.153), γ ∈ R+ is the learning rate (i.e., adaptation gain),

P ∈ Rn×n
+ is a solution of the Lyapunov equation given by

0 = AT
r P+PAr +R, (5.154)

with R∈Rn×n
+ , and e(t), x(t)−xr(t), is the system error with xr(t)∈Rn being the reference state vector of a

reference model dynamics at the inner loop that captures a desired inner loop dynamical system performance

given by

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0. (5.155)

Using (5.152), (5.153), and (5.155), the inner loop system error dynamics is given by

ė(t) = Are(t)−BΛW̃ T(t)σ
(
x(t),c(t)

)
, e(0) = e0, (5.156)

˙̃W (t) = γProjm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t),c(t)

)
eT(t)PB

)
−Ẇ (t), W̃ (0) = W̃0, (5.157)

where W̃ (t), Ŵ (t)−W (t) ∈ R(s+n+ny)×m is the weight estimation error and e0 , x0− xr0. Once again, we

note that the unknown weight matrix W (t) and its derivative have unknown upper bounds (i.e., ‖W (t)‖F ≤w

and ‖Ẇ (t)‖F ≤ ẇ with unknown w and ẇ).

Comment 5.4.1 The update law given by (5.153) for the set-theoretic model reference adaptive control

architecture can be derived by considering the following energy function

V (e,W̃ ) = φ(‖e‖P)+ γ
−1tr

[
(W̃Λ

1/2)T(W̃Λ
1/2)
]
. (5.158)

As shown in [1], the time derivative of this energy function is upper bounded by

V̇
(
e(t),W̃ (t)

)
≤ −1

2
α1V (e,W̃ )+α2, (5.159)

where α1 ,
λmin(R)
λmax(P)

, d , 2γ−1w̃ ẇ‖Λ‖2, α2 , 1
2 α1γ−1w̃2‖Λ‖2 +d, and w̃ = Ŵmax +w. In particular, (5.159)

is sufficient to conclude that V (e,W̃ ) is upper bounded. Hence, one can now conclude with ‖e0‖P < ε that
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the pair (e(t),W̃ (t)) is bounded and the system error satisfies the strict bound given by

‖e(t)‖P < ε, t ≥ 0. (5.160)

5.4.3.2 Outer Loop Architecture

We now construct the outer loop control law for (5.142). Specifically, consider the dymanic com-

pensator given by

φ̇c(t) = Fcφc(t)+Gcηp(t), φp(0) = φp0, (5.161)

c(t) = Hcφc(t)− Jcηp(t), (5.162)

ηp(t) = Mpφp(t)− c0(t), (5.163)

where Fc ∈ Rny×ny , Gc ∈ Rny×nc0 , ηp(t) ∈ Rnc0 , Mp ∈ Rnc0×nφp , Hc ∈ Rny×ny , Jc ∈ Rny×nc0 , φc(t) ∈ Rny is the

outer loop state vector, c0(t) ∈Rnc0 is the initial command signal produced by the human, which is the input

to the outer loop architecture, and c(t) ∈Rny is the generated command at the outer loop as shown in Figure

5.68. As discussed earlier, these outer loop dynamics can exist owing to employing either sequential loop

closure and/or high-level guidance methods.

Now by letting φ(t) = [xT
r (t), φ T

p (t), φ T
c (t)]

T ∈ Rnφ , nφ = n + nφp + ny, one can write (5.142),

(5.155), and (5.161) in a compact form as

φ̇(t) = Frφ(t)+Grc0(t)+Ge(t), φ(0) = φ0, (5.164)

where

Fr ,




Ar −BrJcMp BrHc

GpN Fp 0

0 GcMp Fc



∈ R(n+nφp+ny)×(n+nφp+ny), (5.165)

Gr ,




BrJc

0

−Gc



∈ R(n+nφp+ny)×nc0 , G,




0

GpN

0



∈ R(n+nφp+ny)×n, (5.166)
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with N = [Inp×np ,0np×nc ]. Note that Fr should be made a Hurwitz matrix by design to capture stability when

c0(t) is bounded a-priori in the absence of uncertainties; this is discussed in the next comment.

Comment 5.4.2 If c0(t) is bounded, then it follows from Fr being Hurwitz and e(t) being bounded (see

Comment 5.4.1) that the solution φ(t) to (5.164) is bounded. Yet, since humans make decisions in response

to the system states received from the dynamical system as shown in the human loop part of Figure 5.68,

c0(t) cannot be assumed to be a-priori bounded signal. We refer to the next subsection and Section 5.4.4 for

more details concerning this point.

5.4.3.3 Human Loop Architecture

For the human loop, we consider a general class of linear human models with constant time-delay

[138]

ξ̇ (t) = Ahξ (t)+Bhθ(t− τ), ξ (0) = ξ0 (5.167)

c0(t) = Chξ (t)+Dhθ(t− τ), (5.168)

where ξ (t) ∈ Rnξ is the internal human state vector, τ ∈ R+ is the human reaction time-delay, Ah ∈ Rnξ×nξ ,

Bh ∈ Rnξ×nr , Ch ∈ Rnc0×nξ , and Dh ∈ Rnc0×nr . Here, the input to the human dynamics is given by

θ(t) = r(t)−Ehφp(t), (5.169)

where θ(t) ∈ Rnr , and r(t) ∈ Rnr is the bounded reference signal. In (5.169), Eh ∈ Rnr×n selects the

appropriate states to be compared with r(t). Note that the dynamics given by (5.167), (5.168) and (5.169)

captures a wide range of linear time-invariant human models with time-delay including Neal-Smith model

and its extensions [146–150] and is also utilized as-is by the authors of [138] in their analysis.

5.4.4 Stability and Performance Guarantee Analysis

Based on the structure of the inner, outer, and human loops presented in the previous section,

we now analyze the closed-loop system performance and show how the system error at the inner loop

affects the human loop. We then demonstrate the effectiveness of the set-theoretic model reference adaptive

control architecture at the inner loop for guaranteeing a user-defined performance constraint on the norm
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of system error trajectory without any knowledge of the upper bound on the system uncertainties, which

results in an acceptable human performance in accomplishing a given task. For this purpose, letting x0(t),

[φ T(t), ξ T(t)]T ∈ Rn0 , n0 , nφ +nξ , one can write the dynamics in (5.164) and (5.167) as

ẋ0(t) = A0x0(t)+A1x0(t− τ)+B0r(t− τ)+B1e(t), x0(t) = ψ0(t) for t ∈ [−τ, 0], (5.170)

where ψ0(t) ∈ Rn0 is the initial condition and

A0 ,




Fr GrCh

0 Ah


 ∈ Rn0×n0 , A1 ,



−GrDhEhN0 0

−BhEhN0 0


 ∈ Rn0×n0 , (5.171)

B0 ,




GrDh

Bh


 ∈ Rn0×nr , B1 ,




G

0


 ∈ Rn0×n, (5.172)

with N0 = [0nφp×n, Inφp×nφp
, 0nφp×ny ]. Now, we consider the overall nominal system performance as the case

where there is no uncertainty in the system at the inner loop. In other words, the overall performance of the

human interacting with the physical system in absence of any uncertainties is viewed as the ideal behavior

represented by

˙̂x0(t) = A0x̂0(t)+A1x̂0(t− τ)+B0r(t− τ), x̂0(t) = ψ̂0(t) for t ∈ [−τ, 0]. (5.173)

Now letting x̃(t), x0(t)− x̂(t) and using (5.170) and (5.173), the error dynamics can be written as

˙̃x0(t) = A0x̃0(t)+A1x̃0(t− τ)+B1e(t), x̃0(t) = ψ(t) for t ∈ [−τ, 0], (5.174)

where ψ(t), ψ0(t)− ψ̂0(t).

Comment 5.4.3 Setting e(t) = 0 in (5.174), the nominal system is obtained as

˙̃x0(t) = A0x̃0(t)+A1x̃0(t− τ). (5.175)

Notice here that the delay term appears only in the state but not in the derivative of the state. This

class of dynamics are known as retarded type [151–153], which exhibits certain continuity properties in

their spectrum useful for assessing their stability characteristics. To elaborate on this, let us write the
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characteristic function of the system as

f (s,e−sτ), det[sI−A0−A1e−sτ ], (5.176)

where I is the identity matrix, s is the Laplace variable, and the delay term τ appears in exponentials in the

Laplace sense. The zeros of (5.176), which are called the characteristic roots, determine the stability of the

nominal system as follows. The nominal system is asymptotically stable for a given delay τ ≥ 0 and system

matrices A0, A1, if and only if the characteristic roots all lie on the left-half complex plane s ∈ C [151].

Stability of (5.175) can be assessed with respect to τ by observing certain features of the system

characteristic roots. The real part of these roots is continuous with respect to τ and hence as τ is varied,

the only way the system can switch from stable to unstable behavior, or vice versa, is that a root touches the

imaginary axis at s =∓ jω∗ for some critical delays τ = τ∗ [154]. In general, as the critical delay is slightly

increased, a pair of complex conjugate roots cross over the imaginary axis. Depending on the direction of

crossing, the system will have two more, or two less, unstable roots.

Considering all the delays causing crossings over the imaginary axis, starting with τ = 0, one

can decompose the delay axis into countably many intervals, where the upper/lower boundaries of each

interval is determined by τ∗, and neighboring intervals have two or more less unstable roots depending on

the direction of crossing of the respective root s =∓ jω∗. Ultimately, the intervals for which the number of

unstable roots is zero are labeled as stable, otherwise unstable. The principle behind this approach is known

as the τ-decomposition property [155, 156].

For stability assessment, it is crucial to detect all τ for which system characteristic roots touch the

imaginary axis s =∓ jω . Notice however that this is not a trivial task mainly because the exponential terms

in (5.176) make the system infinite dimensional. That is, there exist infinitely many roots of the system,

and accurate and exhaustive detection of those touching the imaginary axis is a challenge. This very likely

explains more than six decades of research on this particular problem, see a review in [157]. Without getting

into details, here we mention that we will utilize the approach in [158] to compute the imaginary crossings

and their corresponding delay values. To compute the rightmost (dominant) roots of the system, we will

utilize the TRACE-DDE toolbox [159].
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Comment 5.4.4 (Section 5.6.2, [160]) Consider a system with single time-delay given by

ż(t) = A0z(t)+A1z(t− τ), z(t) = ψ(t) for t ∈ [−τ, 0], (5.177)

where z(t) ∈ Rn is the system state, A0 ∈ Rn×n and A1 ∈ Rn×n are constant matrices, and τ is a positive

time-delay. Then, its solution satisfies

z(t,ψ) = Ψ(t)ψ(0)+
∫ 0

−τ

Ψ(t− τ−θ)A1ψ(θ)dθ , t ≥ 0, (5.178)

where Ψ(t) ∈ Rn×n is the fundamental solution satisfying

Ψ̇(t) = A0Ψ(t)+A1Ψ(t− τ), t ≥ 0, (5.179)

and the initial condition Ψ(0) = I and Ψ(t) = 0 for t < 0. Furthermore, assuming that the system given by

(5.177) is asymptotically stable, then there exist an α > 0 such that

‖Ψ(t)‖2 ≤ Ke−αt , t ≥ 0, (5.180)

for some K > 1.

Let us now apply Comment 5.4.4 to bound the error dynamics in (5.174). For this, one first needs

to guarantee that the nominal system (e(t) = 0) must be asymptotically stable. This can be assessed from

Comment 5.4.3. Under asymptotic stability assumption, notice that the fundamental solution Ψ(t) of the

nominal system respects (5.180). Therefore, the solution of the error dynamics in (5.174)

x̃(t,ψ) = Ψ(t)ψ(0)+
∫ 0

−τ

Ψ(t− τ−θ)A1ψ(θ)dθ +
∫ t

0
Ψ(t− r)B1e(r)dr, t ≥ 0, (5.181)

can be bounded by

‖x̃(t,ψ)‖2 ≤ Ke−αt‖ψ(0)‖2 +K
∫ 0

−τ

e−α(t−τ−θ)‖A1ψ(θ)‖2dθ +K
∫ t

0
e−α(t−r)‖B1e(r)‖2dr,

≤ Ke−αt‖ψ(0)‖2 +K‖A1‖2
(

sup
−τ≤θ≤0

ψ(θ)
)∫ 0

−τ

e−α(t−τ−θ)dθ

+K‖B1‖2
(

sup
0≤r≤t

e(r)
)∫ t

0
e−α(t−r)dr. (5.182)
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Solving the integrals in (5.182) now results in

‖x̃(t,ψ)‖2 ≤ Ke−αt‖ψ(0)‖2 +
K
α

[
‖A1‖2e−αt(eατ −1

)
sup

−τ≤θ≤0
ψ(θ)+‖B1‖2

(
1− e−αt) sup

0≤r≤t
e(r)

]
.

(5.183)

We now evaluate (5.183) in a worst-case setting. That is, one can write

‖x̃(t,ψ)‖2 ≤ K‖ψ(0)‖2 +
K
α

[
‖A1‖2

(
eατ −1

)
sup

−τ≤θ≤0
ψ(θ)+‖B1‖2 sup

0≤r≤t
e(r)

]
, (5.184)

from (5.183). Finally, it also follows from (5.160) that

‖e(t)‖2 <
ε√

λmin(P)
. (5.185)

Thus, (5.184) can be further simplified as

‖x̃(t,ψ)‖2 ≤ K‖ψ(0)‖2 +
K
α

[
‖A1‖2ψ

(
eατ −1

)
+‖B1‖2

ε√
λmin(P)

]
, (5.186)

where ψ , sup−τ≤θ≤0 ψ(θ).

Comment 5.4.5 Without loss of generality, we assume that the the initial condition of the system in (5.170)

is equal to that of the ideal behavior of the system in (5.173) (i.e. ψ0(t) = ψ̂0(t) for t ∈ [−τ, 0]) or,

equivalently, ψ(t)≡ 0 for t ∈ [−τ, 0] and ψ = 0. Therefore, one can rewrite (5.186) as

‖x̃(t,ψ)‖2 ≤ εµ, µ ,
K‖B1‖2

α
√

λmin(P)
. (5.187)

The upper bound on the error signal x̃(t,ψ) obtained in (5.187) implies that the user-defined performance

parameter ε can be utilized to control the deviation of the system from the ideal behavior in (5.173).

5.4.5 Illustrative Numerical Example

In this section, we demonstrate the efficacy of the presented architecture for an adaptive flight

control application with a Neal-Smith pilot model. For this purpose, consider the linearized longitudinal

flight dynamics of a generic hypersonic vehicle [140, 161] given by
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ẋg = Agxg +Bgug, (5.188)

where xg = [v(t), α(t), q(t), θ(t)]T ∈ R4, with v(t) being the velocity in feet per second, α(t) being the

angle of attack in radians, q(t) being the pitch rate in radians per second, and θ(t) being the pitch angle

in radians. In addition, ug = [uth(t), ue(t)]T, where uth(t) denotes the throttle equivalence ratio, and ue(t)

denotes the elevator deflection angle in degrees. The system matrices in (5.188) for steady level flight

condition of Mach 6 and an altitude of 80,000 feet are given by

Ag =




−0.0037 −0.7169 0 −31.818

0 −0.2398 1 0

0 4.5689 −0.1189 0

0 0 1 0



, Bg =




27.262 0.06525

0 −0.0001

0 −0.18561

0 0



. (5.189)

One can simplify this dynamics [140] and obtain the decoupled velocity dynamics given by

v̇(t) = avv(t)+bvuth, (5.190)

with av =−0.0037 and bv = 27.262, and the decoupled longitudinal dynamics given by

ẋ∗(t) =




Ap 02×2

Gp Fp


x∗(t)+




Bp

02×1



(

Λue(t)+δp(xp(t))
)
, (5.191)

where x∗(t) = [xT
p (t),φ

T
p (t)]

T ∈ R3 with xp(t) = [α(t), q(t)]T ∈ R2, φp(t) = θ(t) ∈ R, and

Ap =



−0.2398 1

4.5689 −0.1189


 , Bp =



−0.0001

−0.18561


 ,Gp =

[
0 1

]
, Fp = 0. (5.192)

In (5.191), δp(xp(t)) represents an uncertainty of the form given in (5.143) with

Wp(t) = [20sin(0.05t), −5, 20]T, σp(xp(t)) = [α(t), q(t), α(t)q(t)]T, (5.193)

and Λ = 0.25 represents the uncertain control effectiveness.
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Based on the model simplifications mentioned above, the control loop for the velocity dynamics

can be designed independent from the longitudinal dynamics. For this purpose, we consider the velocity

dynamics in (5.190) and we let xvc(t) ∈ R to be a velocity integrator state satisfying

ẋcv(t) = v(t)− cv(t), xvc(0) = 0, (5.194)

such that the velocity can track the desired command cv(t). Considering this integral state, one can now

defined the augmented state vector as xv(t), [v(t), xcv(t)]T, and write

ẋv(t) =




av 0

1 0


xv(t)+




bv

0


uth(t)+




0

−1


cv(t), xv(0) = 0. (5.195)

Linear quadratic regulator theory is used to design the nominal controller gain matrix for the velocity

dynamics with the weighting matrices as Qv = diag([10, 1]) to penalize xv(t) and Rv = 10 to penalize

uth(t) resulting in uth(t) =−Kvxv(t) with

Kv =

[
1.0114 0.3162

]
. (5.196)

In what follows, we design the controller for ue(t) and provide the necessary details. Specifically,

the control objective considered in this simulation is for the generic hypersonic vehicle to track the pitch

angle θcmd(t) as commanded by the human. Therefore, the human is generating a pitch angle command

(i.e., c0(t) = θcmd(t)), where the outer loop utilizes this command to generate the pitch rate command (i.e.,

c(t) = qcmd(t)). Then, using this pitch rate command, the inner loop generates the elevator command signal

so that the system can track the desired pitch angle.

5.4.5.1 Inner Loop Control Design

For command following at the inner loop using the pitch rate command qcmd(t) generated by the

outer loop, we consider the dynamic compensator in (5.144) and (5.145) with Ac = 0, Bc = 1, Cc = 1,

Dc = 0, and Cp = [0 1]. We next use linear quadratic regulator theory to design the nominal controller

gain matrix with the weighting matrices as Qi = diag([5, 5, 10]) to penalize x(t) and Ri = 0.01 to penalize

ue(t) resulting in Kp = [−36.3125, −34.4585], and Kc =−31.6228 in (5.147). For the set-theoretic model
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reference adaptive control architecture at the inner loop, we use the generalized restricted potential func-

tion given by φ(‖e(t)‖P) = ‖e(t)‖2
P/
(
ε −‖e(t)‖P

)
, e(t) ∈ Dε , having the partial derivative φd(‖e(t)‖P) =

(
ε − 1

2‖e(t)‖P
)
/
(
ε−‖e(t)‖P

)2, e(t) ∈ Dε , that satisfies all of the conditions given in Definition 5.4.2 [1].

Furthermore, we choose γ = 1, set the projection norm bound imposed on each element of the parameter

estimate to Ŵmax = 80, use R = I to calculate P from (5.154) for the resulting Ar matrix, and set ε = 0.1 such

that the set-theoretic model reference adaptive control guarantees ||e(t)||P < 0.1.

5.4.5.2 Outer Loop Control Design

The outer loop utilizes the pitch command θcmd(t) from the human loop to generate the pitch rate

command qcmd(t) that is fed to the inner loop. For this purpose, we consider the feedback controller from

θcmd(t) to qcmd(t) given by [140]

Gθq = kθq
s+ zθq

s+ pθq
. (5.197)

For this numerical example, we set kθq = 5, zθq = 1, and pθq = 4.

5.4.5.3 Human Loop Transfer Function

To generate the pith command θcmd(t) at the human loop, we assume that the considered generic

hypersonic vehicle is operated by a pilot whose Neal-Smith model is given by [146]

Ghθ = kp
Tps+1
Tzs+1

e−τs, (5.198)

where kp is the positive scalar pilot gain, Tp and Tz are positive scalar time constants, and τ is the pilot

reaction time-delay. For the sake of this numerical example we set kp = 0.5, Tp = 1, Tz = 5 and τ = 0.5.

5.4.5.4 Simulation Results

We first construct the matrices A0 and A1 in Comment 5.4.3 to assess asymptotic stability with

respect to delay τ . To start with, it is easy to show that the delay-free system (τ = 0) is asymptotically stable

since A0+A1 is a Hurwitz matrix. Next, we investigate following from [158] whether or not a characteristic

root s = ∓ jω can touch the imaginary axis for some delay τ > 0. Suppressing the details, we find out that
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there exists no τ > 0 that can cause a root on the imaginary axis. This implies that system stability will never

be lost. That is, we have delay-independent stability. Consequently, the theoretical results for obtaining the

upper bound on the error signal x̃(t,ψ) in Section 5.4.4 can be validated in simulations for any delay.

Figures 5.69 and 5.70 show the pitch command following performance with the nominal controller

in the absence of any system uncertainties, where it is clear from Figures 5.71 and 5.72 that once the uncer-

tainties are introduced to the system, the nominal controller is not able to achieve the desired performance

and the system becomes unstable. Next, we show the command following performance with the standard

adaptive control architecture at the inner loop. As mentioned earlier, without the knowledge of the upper

bound on the system uncertainties, an appropriate adaptation gain cannot be set a priori. Therefore, as one

can see from Figures 5.73 to 5.75, while the standard model reference adaptive control architecture can

stabilize the system, the desired level of system performance (i.e., ||e(t)||P < 0.1) cannot be guaranteed.

Specifically, since a low adaptation gain γ = 1 is utilized, the standard model reference adaptive controller

exhibits poor transient performance as the angle of attack reaches to over 20 degrees, pitch angle reaches

to over 30 degrees, and the pitch rate reaches to over 40 degrees per second during the transient time.

Furthermore, Figures 5.76 to 5.78 illustrate the effect of having different human reaction time-delays on the

command following performance using this architecture. Once again, we note that, although increasing the

adaptation gain can improve the transient performance in this setting, one can not set a suitable adaptation

gain at the pre-design stage without a complete knowledge of the upper bound on the system uncertainties.

Alternatively, if a very large adaptation gain is used for all time, the adaptive control system can excite the

high-frequency content of the system.

Next, we utilize the set-theoretic model reference adaptive control at the inner loop to enforce

the desired system performance ||e(t)||P < 0.1. Figures 5.79 to 5.81 present the command following

performance with this controller. It can be seen from these figures that the transient performance is greatly

improved compared to Figures 5.73 to 5.75. In particular, the set-theoretic model reference architecture at

the inner loop is now enabling the overall control system to achieve the desired level of system performance

(i.e., ||e(t)||P < 0.1) through increasing the effective adaptation gain based on the norm of system error.

Finally, Figures 5.82 to 5.84 present the effect of having different human reaction time-delays on the

command following performance using the set-theoretic model reference adaptive control at the inner loop.

It is evident from these figures that the proposed control architecture can guarantee a desired level of system

performance even in the presence of large human reaction time-delays.
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Figure 5.69: Command following performance with the nominal controller in the absence of the system
uncertainty.
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Figure 5.70: Velocity, altitude, and the control signals with the nominal controller in the absence of the
system uncertainty.
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Figure 5.71: Command following performance with the nominal controller in the presence of the system
uncertainty.
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Figure 5.72: Velocity, altitude, and the control signals with the nominal controller in the presence of the
system uncertainty.
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Figure 5.73: Command following performance with the standard model reference adaptive controller at the
inner loop.
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Figure 5.74: Velocity, altitude, and the control signals with the standard model reference adaptive controller
at the inner loop.
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Figure 5.75: Norm of the system error trajectories with the standard model reference adaptive controller at
the inner loop.
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Figure 5.76: The effect of increase in the human reaction time-delay τ from 0 to 5 (blue to red) on the
command following performance with the standard model reference adaptive controller at the inner loop.
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Figure 5.77: The effect of increase in the human reaction time-delay τ from 0 to 5 (blue to red) on velocity,
altitude, and the control signals with the standard model reference adaptive controller at the inner loop.
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Figure 5.78: The effect of increase in the human reaction time-delay τ from 0 to 5 (blue to red) on the norm
of the system error trajectories with the standard model reference adaptive controller at the inner loop.
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Figure 5.79: Command following performance with the proposed set-theoretic model reference adaptive
controller at the inner loop.
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Figure 5.80: Velocity, altitude, and the control signals with the proposed set-theoretic model reference
adaptive controller at the inner loop.
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Figure 5.81: Norm of the system error trajectories and the evolution of the effective learning rate γφd(·) with
the proposed set-theoretic model reference adaptive controller at the inner loop.
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Figure 5.82: The effect of increase in the human reaction time-delay τ from 0 to 5 (blue to red) on the
command following performance with the proposed set-theoretic model reference adaptive controller at the
inner loop.
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Figure 5.83: The effect of increase in the human reaction time-delay τ from 0 to 5 (blue to red) on velocity,
altitude, and the control signals with the proposed set-theoretic model reference adaptive controller at the
inner loop.
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Figure 5.84: The effect of increase in the human reaction time-delay τ from 0 to 5 (blue to red) on the norm
of the system error trajectories and the evolution of the effective learning rate γφd(·) with the proposed
set-theoretic model reference adaptive controller at the inner loop.
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5.4.6 Conclusion

We studied human-in-the-loop physical systems with uncertainties due to failures and/or modeling

inaccuracies, a set-theoretic model reference adaptive control law at the inner loop that augments a general

nominal dynamic compensator structure, and a dynamic outer loop compensator to capture either sequential

loop closure methods and/or high-level guidance algorithms. Specifically, to complement and extend our

recent studies, we first provided a sufficient stability condition for the overall physical system; that is,

asymptotic stability of the system given by (5.177) with A0 and A1 in (5.171). We then showed how to

constrain the system error trajectories in order to minimally affect the performance of the overall human-in-

the-loop physical system; that is, the upper bound given by (5.187) with ε denoting a user-defined constraint.

Finally, we demonstrated the efficacy of our theoretical results through an illustrative numerical example.
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CHAPTER 6: FINITE-TIME DISTRIBUTED CONTROL ARCHITECTURE WITH TIME

TRANSFORMATION

This chapter presents a novel distributed control architecture with a-priori given, user-defined finite-

time convergence guarantees using a time transformation technique. In particular, Section 6.1 presents this

architecture for networked multiagent systems having first-order dynamics, where Section 6.2 extent this

result to second-order multiagent systems.

6.1 Robustness of Finite-Time Distributed Control Algorithm with Time Transformation1

The focus of this paper is distributed control of multiagent systems in a-priori given, user-defined

finite-time interval using a recently developed time transformation approach, where our contribution is

twofold. First, a generalized time transformation function is proposed that converts the user-defined finite-

time interval to a stretched infinite-time interval, where one can design a distributed control algorithm on

this stretched interval and then transform it back to the original finite-time interval for achieving a given

multiagent system objective. Second, for a specific time transformation function, we analytically establish

the robustness properties of the resulting finite-time distributed control algorithms against vanishing and

non-vanishing system uncertainties. In contrast to existing finite-time approaches, it is shown that the

proposed algorithms can preserve a-priori given, user-defined finite-time convergence regardless of the

initial conditions of the multiagent system and without requiring a knowledge of the upper bounds of

the considered class of system uncertainties. An illustrative numerical example is further included to

demonstrate the presented results.

6.1.1 Introduction

Distributed control algorithms for multiagent systems can be broadly classified as the algorithms

that guarantee asymptotic convergence (see, for example, [162–167] and references therein) and the algo-

rithms that guarantee finite-time convergence (see, for example, [53–58, 168–170] and references therein).

1This section has been submitted to the American Control Conference.

231



www.manaraa.com

Depending on the application of interest, one class of these algorithms can be preferred versus the other.

Building on our recent results [72, 73, 171], this paper studies finite-time distributed control algorithms

motivated by the time-critical multiagent systems applications.

Specifically, utilizing and generalizing the non-Lipschitz control methods proposed in, for example,

[10, 11], the algorithms presented by the authors of [53–58, 168–170] can achieve finite-time convergence.

However, this convergence depends on the initial conditions of agents. The authors of [12, 13, 61–65]

partially address this problem by proposing algorithms with fixed-time convergence properties. While

these algorithms provide an upper bound on the convergence time independent of the initial conditions,

the calculated bounds do not necessarily hold globally for all initial conditions and/or they can be (overly)

conservative [12]. This implies that it may not be possible to assign a-priori, user-defined finite-time with

these algorithms. Furthermore, the finite-time convergence can depend on the bound of system uncertainties

in fixed-time algorithms. Notable contributions that can achieve a-priori, user-defined finite-time conver-

gence (also referred to as predefined-time) are documented by the authors of [14, 15, 69, 70]. In particular,

the authors of [14] and [15] propose a sliding mode approach; however, their algorithm applies only to single

systems and it does require a knowledge of the upper bounds of the considered class of system uncertainties

in order to achieve system robustness. The method proposed in [69] similarly applies to single systems

and the authors do not account for any system uncertainties. In addition, the algorithm proposed in [70] is

predicated on an optimal control framework; however, it is also in the context of single systems.

A novel idea, namely the time transformation method, is proposed in our recent results documented

in [72, 73, 171] for achieving a-priori, user-defined smooth finite-time convergence, where these results

consider distributed control algorithms for multiagent systems. The key feature of this method is to perform

analysis of a given finite-time distributed control algorithm in a stretched infinite-time interval, where one

can readily utilize tools from, for example, standard Lyapunov stability theory, to conclude stability and

convergence guarantees on the original user-defined finite-time interval. While the authors of [67, 68, 71,

172] use similar distributed control algorithms to the ones presented in [72, 73, 171] (note that the studies in

[67, 68, 172] can be considered as a multiagent systems generalization of the idea documented in [66]), the

results documented in [72] are not limited to time-invariant graph topologies and the results documented in

[73, 171] are not limited to multiagent systems with static equilibrium points1. More importantly, due to a

1The authors of [173] and [174] provide extensions of [67, 68, 172]; however, the boundedness of their proposed control
signals are not discussed.
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lack of complete systematic design and analysis framework, the results in [67, 68, 172] may not readily be

extendable and system-theoretic robustness tradeoffs of these algorithms are completely unknown.

The focus of this paper is distributed control of multiagent systems in a-priori given, user-defined

finite-time interval using the recently developed time transformation approach [72, 73, 171] discussed above.

Specifically, our contribution is twofold. First, a generalized time transformation function is proposed that

converts the user-defined finite-time interval to a stretched infinite-time interval, where one can design a

distributed control algorithm on this stretched interval and then transform it back to the original finite-

time interval for achieving a given multiagent system objective. Second, for a specific time transformation

function, we analytically establish the complete robustness properties of the resulting finite-time distributed

control algorithms against vanishing (i.e., state-dependent) and non-vanishing (i.e., state-independent) sys-

tem uncertainties in our systematic time transformation framework2. In contrast to existing finite-time

approaches, it is shown that the proposed algorithms can preserve a-priori given, user-defined finite-time

convergence regardless of the initial conditions of the multiagent system and without requiring a knowledge

of the upper bounds of the considered class of system uncertainties. An illustrative numerical example is

further included to demonstrate the presented results. For the notation used throughout this paper and related

mathematical preliminaries we refer to Appendix G.

6.1.2 Problem Formulation

In this section, we introduce the leader-follower problem also considered in [73]. While we consider

this benchmark problem, this is without loss of generality in the sense that the presented distributed control

architecture can be extended to other multiagent control problems. In particular, consider a multiagent

system that consists of N agents exchanging information based on a connected and undirected graph G.

Furthermore, assume that a subset of the agents have access to the position of a time-varying leader given

by

p(t) =
∫ t

0
v(τ)dτ + p(0), p(t) ∈ Rn, n ∈ {1,2,3}, (6.1)

2While the analysis performed in [73, 171] can also be utilized for non-vanishing system uncertainties, these prior works do
not make any attempts in showing robustness against state-dependent vanishing system uncertainties. Note that such vanishing
system uncertainties can destabilize dynamical systems unlike the non-vanishing ones; hence, they are more critical to the overall
system stability and convergence.
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where v(t) ∈ Rn,n ∈ {1,2,3}, denotes the bounded and piecewise continuous velocity (with unknown

bound) of the leader. For the sake of simplicity and without loss of generality, we let n = 1 in what follows3.

Next, we consider that dynamics of the agents are in the form given by

ẋi(t) = ui(t)+ωixi(t)+ρi(t), xi(0) = xi0, i ∈ {1,2, . . . ,N}, (6.2)

where xi(t) ∈ R, i ∈ {1,2, . . . ,N} and ui(t) ∈ R, i ∈ {1,2, . . . ,N} are the position and the control signal

of each agent, respectively. In (6.2), ωi ∈ R, i ∈ {1,2, . . . ,N}, and ρi(t) ∈ R, i ∈ {1,2, . . . ,N}, represent

vanishing and non-vanishing uncertainties in each agent’s dynamics. Here, while we assume that the

unknown term ωi is bounded and the unknown term ρi(t) is bounded and piecewise continuous for the

well-posedness of the considered problem, we do not require the knowledge of their upper bound. In the

next section, we propose a generalized time transformation function for finite-time distributed control with

a-priori given, user-defined finite-time convergence; that is,

lim
t→T

(
xi(t)− p(t)

)
= 0, i ∈ {1,2, . . . ,N}, (6.3)

where T ∈ R+ is this user-defined finite time.

6.1.3 Finite-Time Distributed Control with a Generalized Time Transformation

This section presents the first contribution of this paper. In particular, we propose a generalized time

transformation function that converts the user-defined finite-time interval to a stretched infinite-time interval,

where one can design a distributed control algorithm on this stretched interval. Specifically, let t = θ(s)

denote this generalized time transformation function. Here, θ(s) is strictly increasing and continuously

differentiable with respect to s, which transforms the infinite time interval s∈ [0,∞) to the finite time interval

t ∈ [0,T ) with T ∈ R+ being the user-defined finite time4. To this end, we propose the distributed control

algorithm given by

ui(t) = −α
(
θ
′(θ−1(t))

)−1
(

∑
i∼ j

(
xi(t)− x j(t)

)
+ ki

(
xi(t)− p(t)

))
, i ∈ {1,2, . . . ,N}, (6.4)

3The presented results can be applied as they are to the cases when n > 1 (see Section 6.1.5).
4It is considered that s = θ−1(t) exists for the results of this paper, where this is clearly possible by properly selecting the

generalized time transformation function in the control design process.
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defined on t ∈ [0,T ) with α ∈R+. Note that in (6.4), ki = 1 for the subset of the agents having access to the

position of a time-varying leader in (6.1) and ki = 0 for other agents.

Let x̃i(t) , xi(t)− p(t), i ∈ {1,2, . . . ,N}, be the error between the position of each agent and that

of the leader. Based on the proposed distributed control signal given by (6.4), the resulting error dynamics

becomes

˙̃xi(t) = −α
(
θ
′(θ−1(t))

)−1
(

∑
i∼ j

(
x̃i(t)− x̃ j(t)

)
+ kix̃i(t)

)
+ωi

(
x̃i(t)+ p(t)

)
+ρi(t)− v(t), x̃i(0) = x̃i0,

i ∈ {1,2, . . . ,N}. (6.5)

Defining now the augmented error state as x̃(t), [x̃1(t), x̃2(t), . . . , x̃N(t)]T ∈ RN , the error dynamics in (6.5)

can be written in the compact form given by

˙̃x(t) = −α
(
θ
′(θ−1(t))

)−1F(G)x̃(t)+Ω
(
x̃(t)+1N p(t)

)
+ρ(t)−1Nv(t), (6.6)

=
(
−α

(
θ
′(θ−1(t))

)−1F(G)+Ω
)
x̃(t)+h(t), x̃(0) = x̃0, (6.7)

where h(t) , Ω1N p(t) + ρ(t)− 1Nv(t), Ω , diag(ω1,ω2, . . . ,ωN) ∈ RN×N and ρ(t) , [ρ1(t),ρ2(t), . . . ,

ρN(t)]T ∈ RN .

Considering the time transformation function t = θ(s), let ξ (t) ∈RN , t ∈ [0,T ), be a solution to the

dynamical system given by (6.7) such that x̃s(s) = ξ (t), s ∈ [0,∞). It now follows from Remark G.1 (see the

appendix) that

x̃′s(s) =
(
−αF(G)+Ωθ

′(s)
)
x̃s(s)+θ

′(s)hs(s), x̃s(θ
−1(0)) = x̃0, (6.8)

where hs(s) = h(θ(s)) based on Remark G.2. Note that hs(s) consists of bounded terms; hence, it is a

bounded function. Using θ ′(s) = dθ(s)/ds = dt/ds in (6.8) yields

x̃′s(s) =
(
−αF(G)+Ω

dt
ds

)
x̃s(s)+

dt
ds

hs(s), x̃s(0) = x̃0. (6.9)

As noted in Remark G.1, the solution of (6.7) and (6.9) are equivalent with different argument domains; that

is, x̃s(s) = x̃(t). We now write the introduced control signal (6.4) in the compact form given by

u(t) = −α
ds
dt
F(G)x̃(t), (6.10)
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which has the following time derivative with respect to t

u̇(t) = −α
d2s
dt2F(G)x̃(t)−α

ds
dt
F(G) ˙̃x(t),

=
d2s
dt2

dt
ds

u(t)−α
ds
dt
F(G)

(
u(t)+Ω

(
x̃(t)+1N p(t)

)
+ρ(t)−1Nv(t)

)
,

=
d2s
dt2

dt
ds

u(t)−α
ds
dt
F(G)

(
u(t)+Ωx̃(t)+h(t)

)
, u(0) = u0. (6.11)

Similar to how we obtain (6.9) from (6.7), one can rewrite (6.11) in the infinite time interval s ∈ [0,∞) as

u′s(s) = −αF(G)Ωx̃s(s)−
(

αF(G)− d2s
dt2

(dt
ds

)2
IN

)
us(s)−αF(G)hs(s), us(0) = u0. (6.12)

One can now augment the state error dynamics in (6.9) and control signal dynamics in (6.12) as




x̃′s(s)

u′s(s)


 =



−αF(G)+Ω

dt
ds 0

−αF(G)Ω −αF(G)+ d2s
dt2

( dt
ds

)2IN







x̃s(s)

us(s)


+




dt
ds IN

−αF(G)


hs(s),




x̃s(0)

us(0)


=




x̃0

u0


 . (6.13)

Remark 6.1.1 The time transformation function t = θ(s) should be chosen by the control user such that (i)

the state error dynamics and control signal dynamics given by (6.13) are stable, which results in bounded

error state x̃s(s) and control signal us(s), and (ii) the asymptotic stability for the error state x̃s(s) is achieved

(i.e., lim
s→∞

x̃s(s) = 0). By Remark G.1, the above discussion implies that the error state x̃(t) and control signal

u(t) are bounded in the original time interval t ∈ [0,T ) and lim
t→T

(
xi(t)− p(t)

)
= 0. The latter result implies

that the agents converge to the position of the time-varying leader at the user-defined finite time T .

As discussed in Remark 6.1.1, the selection of the time transformation function t = θ(s) plays a

crucial role on the stability of the closed-loop system dynamics given in (6.13). Adopted from the previous

work of the authors in [72, 73], a candidate time transformation function satisfying the conditions in Remark

6.1.1, along with rigorous and detailed analysis on stability of the closed-loop system dynamics, is presented

in the next section.
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6.1.4 Robustness to Vanishing and Non-Vanishing System Uncertainties

This section presents the second contribution of this paper. Specifically, using the time transfor-

mation function candidate proposed in [72, 73], we now analytically analyze the robustness properties of

the overall multiagent system with the time transformation-based finite-time distributed control algorithm

in (6.4) in presence of vanishing and non-vanishing system uncertainties (i.e., ωi ∈ R, i ∈ {1,2, . . . ,N}, and

ρi(t) ∈ R, i ∈ {1,2, . . . ,N}, in (6.2)). To this end, consider the time transformation candidate function given

by

t = θ(s), T (1− e−s), (6.14)

where T ∈ R+ is the a-priori given, user-defined finite time. Note that this time transformation function has

the derivative with respect to s ∈ [0,∞) given by

dt
ds

= θ
′(s) = Te−s = T − t. (6.15)

Introducing (6.15) in (6.4) results in the control signal given by

ui(t) = − α

T − t

(
∑
i∼ j

(
xi(t)− x j(t)

)
+ ki

(
xi(t)− p(t)

))
, i ∈ {1,2, . . . ,N}, (6.16)

or in the compact form

u(t) = − α

T − t
F(G)x̃(t). (6.17)

Furthermore, using (6.15) in the error dynamics given by (6.5) yields

˙̃x(t) =
(
− α

T − t
F(G)+Ω

)
x̃(t)+h(t), x̃(0) = x̃0. (6.18)

Similar to the steps shown in the previous section, one can now write (6.18) in the infinite-time interval

s ∈ [0,∞) as

x̃′s(s) =
(
−αF(G)+ΩTe−s

)
x̃s(s)+Te−shs(s), x̃s(0) = x̃0. (6.19)
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The augmented form of the state error and the control signal dynamics can also be obtained similar to (6.13)

as




x̃′s(s)

u′s(s)


 =



−αF(G)+ΩTe−s 0

−αF(G)Ω −S







x̃s(s)

us(s)


+




Te−sIN

−αF(G)


hs(s),




x̃s(0)

us(0)


=




x̃0

u0


 , (6.20)

where

S , αF(G)− IN ∈ RN×N . (6.21)

Remark 6.1.2 Letting A(t) , − α

T−tF(G)+Ω, the error dynamics given in (6.18) can be rewritten in the

form

˙̃x(t) = A(t)x̃(t)+h(t), x̃(0) = x̃0. (6.22)

Now, since A(t) and h(t) are integrable functions of t over the finite-time interval t ∈ [0,T − δ ] for every

small positive constant δ , it follows from [175, p. 97] that the error dynamics given in (6.18) has a unique

solution on the finite-time interval [0,T ). Alternatively, by analyzing the transferred error dynamics in the

infinite-time interval given in (6.19), one can conclude the existence and uniqueness of the solution x̃s(s)

over the infinite-time interval s ∈ [0,∞). Hence, there exist a unique solution for the error dynamics given

in (6.18) over the finite-time interval [0,T ).

Theorem 6.1.1 Consider the multiagent system that consists of N agents on a connected, undirected graph

G, where the uncertain dynamics of agent i ∈ {1, . . . ,N} is given by (6.2). In addition, assume that there

exists at least one agent sensing the position of the time-varying leader given by (6.1), which has bounded

but unknown velocity. Considering the local control algorithm ui(t), i = 1, . . . ,N, for each agent given by

(6.16), let the design parameter α be chosen to make S = αF(G)− IN positive definite5. Then, the closed-

loop system signals including the control signals remain bounded and all agents converge to the position of

the leader in the a-priori given, user-defined finite time T (i.e., limt→T x̃(t) = 0) for all initial conditions of

agents and for all finite pairs (ωi,ρi(t)), i ∈ {1, . . . ,N}.

5While the design parameter α needs to be chosen to make S in (6.21) positive definite, the proposed control signal in (6.16)
is still implemented in a distributed fashion.
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Proof. To show boundedness of the closed-loop system signals and convergence of all agents to the

position of the leader at the user-defined finite time T , we consider the closed-loop system dynamics after

applying the time transformation function as given in (6.20). We first consider the system error dynamics in

the infinite time interval s ∈ [0,∞) and let V(x̃s(s)) ∈ R+ be an energy function given by

V(x̃s(s)) = x̃T
s (s)x̃s(s) = ‖x̃s(s)‖2

2. (6.23)

The derivative of (6.23) with respect to the stretched time s ∈ [0,∞) along the trajectories of (6.19) is given

by

V ′(x̃s(s)) = 2x̃T
s (s)x̃

′
s(s),

= 2x̃T
s (s)

((
−αF(G)+ΩTe−s)x̃s(s)+Te−shs(s)

)
,

=−2α x̃T
s (s)F(G)x̃s(s)+2Te−sx̃T

s (s)Ωx̃s(s)+2Te−sx̃T
s (s)hs(s),

≤−2αλmin(F(G))‖x̃s(s)‖2
2 +2Te−s

ωmax‖x̃s(s)‖2
2 +2Te−s‖x̃s(s)‖2‖hs(s)‖2, (6.24)

where ωmax , max{ω1, . . . ,ωN}. Using 2‖x̃s(s)‖2‖hs(s)‖2 ≤ ‖x̃s(s)‖2
2 + ‖hs(s)‖2

2 on the last term and

replacing ‖x̃s(s)‖2
2 with V(x̃s(s)) in (6.24) results in

V ′(x̃s(s)) ≤ V(x̃s(s))
(
−2αλmin(F(G))+2Te−s

ωmax
)
+Te−s(V(x̃s(s))+‖hs(s)‖2

2
)
,

≤ V(x̃s(s))
(
−2αλmin(F(G))+Te−s(2ωmax +1)

)
+Te−s‖hs(s)‖2

2. (6.25)

For the sake of simplicity of the rest of the analysis, we define a0 , 2αλmin(F(G)) ∈ R+ by Lemma G.1,

b0 , max{0,T (2ωmax + 1)} ∈ R+ and c0 ∈ R+ to be the upper bound on T‖hs(s)‖2
2, i.e., T‖hs(s)‖2

2 ≤ c0.

This simplifies (6.25) to

V ′(x̃s(s))+(a0−b0e−s)V(x̃s(s)) ≤ e−sc0. (6.26)

Defining the integrating factor µ(s), exp(a0s+b0e−s) ∈R+ and multiplying both sides of (6.26) with this

factor, one would get

µ(s)V ′(x̃s(s))+µ(s)(a0−b0e−s)V(x̃s(s)) ≤ µ(s)e−sc0, (6.27)
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or equivalently,

d
ds

(
µ(s)V(x̃s(s))

)
≤ µ(s)e−sc0. (6.28)

Next, we integrate both sides of (6.28) over the s domain that yields

µ(s)V(x̃s(s)) ≤ c0

∫ s

0
e−τ exp(a0τ +b0e−τ)dτ +V0, (6.29)

where V0 , µ(0)V(x̃(0)) = eb0‖x̃(0)‖2
2. We now set ν(τ), e−τ ∈ R+ with the derivative dν(τ) =−e−τdτ

to get

µ(s)V(x̃s(s)) ≤ −c0

∫ e−s

1
exp(−a0 ln(ν(τ))+b0ν(τ))dν(τ)+V0,

≤ c0

∫ 1

e−s

(
ν(τ)

)−a0eb0ν(τ))dν(τ)+V0,

≤ d0

∫ 1

e−s

(
ν(τ)

)−a0dν(τ)+V0, (6.30)

where d0 , c0eb0 ∈ R+ is the upper bound on c0eb0ν(τ). Note that since τ ∈ [0,s) with s ∈ [0,∞), we have

ν(τ) ∈ (0,1] showing the existence of d0.

We now solve the integral in (6.30) for two possible a0 cases. In particular, if a0 = 1, we have

µ(s)V(x̃s(s)) ≤ d0

∫ 1

e−s

(
ν(τ)

)−1dν(τ)+V0,

≤ d0 lnν(τ)
∣∣∣
1

e−s
+V0,

≤ d0s+V0. (6.31)

Introducing the integral factor µ(s) = exp(s+ b0e−s) in (6.31), the bound on the energy function is now

given by

V(x̃s(s)) ≤
d0s

es+b0e−s +V0e−s−b0e−s
. (6.32)

We are interested in the limit of this bound when s→ ∞ given by

lim
s→∞
V(x̃s(s)) ≤ lim

s→∞

d0s
es+b0e−s + lim

s→∞
V0e−s−b0e−s

,

= lim
s→∞

d0

(1−b0e−s)es+b0e−s = 0, (6.33)
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where we applied the L’Hospital’s Rule to the first limit term. Next, since V(x̃s(s)) is a positive definite

function we can conclude

lim
s→∞
V(x̃s(s)) = 0. (6.34)

For the case when a0 6= 1, one can write

µ(s)V(x̃s(s)) ≤ d0

∫ 1

e−s

(
ν(τ)

)−a0dν(τ)+V0,

≤ d0

(
ν(τ)

)(1−a0)

1−a0

∣∣∣
1

e−s
+V0,

≤ d0

1−a0

(
1− e(a0−1)s)+V0. (6.35)

Introducing the integral factor µ(s) in (6.35), the bound on the energy function is now given by

V(x̃s(s)) ≤
d0

1−a0

(
e−a0s−b0e−s− e−s−b0e−s)

+V0e−a0s−b0e−s
. (6.36)

Once again, we take the limit on the bound on the energy function in (6.36) when s→ ∞ as

lim
s→∞
V(x̃s(s)) ≤ lim

s→∞

d0

1−a0

(
e−a0s−b0e−s− e−s−b0e−s)

+ lim
s→∞
V0e−a0s−b0e−s

= 0. (6.37)

Therefore in all cases we have lims→∞V(x̃s(s)) = 0 resulting in

lim
s→∞

x̃s(s) = 0. (6.38)

Since x̃s(s) = x̃(t) by Remark G.1 and t→ T as s→ ∞, one can obtain

lim
t→T

x̃(t) = 0. (6.39)

Furthermore, it follows from (6.32) and (6.36) that the energy function V(x̃s(s)), and consequently the

state error vector x̃s(s), remain bounded for all s ∈ [0,∞). Equivalently, the state error vector x̃(t), remains

bounded in the finite time interval for all t ∈ [0,T ).

Finally, to show the boundedness of the control signal us(s), consider the second equation in (6.20)

given by
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u′s(s) = −Sus(s)−αF(G)Ωx̃s(s)−αF(G)hs(s), u(0) = u0. (6.40)

As noted earlier, from the boundedness of the position and velocity of the leader as well as the boundedness

of the system uncertainties, it follows that hs(s) is a bounded function. Now, since the last two terms in (6.40)

are bounded, and−S is Hurwitz by the assumption of the theorem, then us(s) is bounded. Equivalently, u(t)

remains bounded in the finite interval t ∈ [0,T ) which concludes the proof. �

Remark 6.1.3 The notable feature of the proposed distributed control algorithm in this section for han-

dling system uncertainties while achieving an a-priori given, user-defined finite-time multiagent system

performance arises mainly from the utilization of the time transformation function in (6.14). Specifically,

the aforementioned time transformation method converts the problem under study from its finite interval

t ∈ [0,T ) to the infinite-time interval s∈ [0,∞). This then enables a control user to exploit any standard (i.e.,

over infinite horizon) system-theoretic tools for synthesis and analysis purposes. The finite-time stability and

convergence guarantees are then immediate by transforming the time to the original interval.

6.1.5 Illustrative Numerical Example

In this section, we present an illustrative numerical example to demonstrate the efficacy of the

presented results of this paper. To this end, consider a multiagent systems that consists of N = 8 agents

exchanging information based on an undirected, connected circle graphG as shown in Figure 6.1, where the

first two agents have access to the position of the time-varying leader given by p(t) = 2.5+ 5sin(0.5t)+

0.5sin(5t) (i.e., ki = 1 for i∈{1,2}, and ki = 0 for i∈{3,4, . . . ,8} in (6.16)). Furthermore, the vanishing and

non-vanishing system uncertainties are selected for this numerical example respectively as wi = −0.3, i ∈

{1, . . . ,8}, and ρi(t) = sin(2t), i ∈ {1, . . . ,8}. Finally, we note that the initial positions of the agents are

selected randomly using the randn function in MATLAB.

For the proposed distributed control algorithm, we use the time transformation function given in

(6.14) with T = 4 in order to enforce the finite-time convergence value equal to 4 seconds and we set α = 10

that results in a positive definite matrix S in (6.21). Figure 6.2 shows the performance of the proposed

distributed control algorithm in presence of vanishing and non-vanishing system uncertainties. As expected

from Theorem 6.1.1, the position of each agent converges to that of the leader at the chosen user-defined

finite time with bounded agent states and control signals. Moreover, for further illustrating the robustness
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Figure 6.1: An example multiagent system on an undirected, connected circle graphG.

of the proposed distributed control algorithm to different vanishing and non-vanishing system uncertainties,

consider four additional uncertainty scenarios as

A :
{ wi = 0

ρi(t) = 0
, B :

{ wi =−0.1

ρi(t) = 2sin(4t)
, (6.41)

C :
{ wi =−0.5

ρi(t) =−4sin(0.5t)
, D :

{ wi = 0.5

ρi(t) =−6sin(2t)
. (6.42)

The initial condition of the agents are selected randomly in the interval [14,16] for scenario A, [8,10] for

scenario B, [−1,1] for scenario C, and [−6,−4] for scenario D. Figure 6.4 shows that in all cases the

proposed algorithm can preserve the user-defined finite-time convergence, regardless of the initial conditions

of the agents and without requiring the knowledge of the upper bounds of the system uncertainties.

As discussed in Section 6.1.2, the proposed algorithm can also be utilized for a-priori given, user-

defined finite-time convergence in higher dimensions (i.e., n>1). For demonstrating this fact in a two

dimensional case (i.e., n = 2), we next consider the same multiagent system having the same vanishing

and non-vanishing system uncertainties for both dimensions, where the first two agents have access to

the position of the time-varying leader given by p(t) = [4sin(1.5t), 4cos(1.5t)]T. Figure 6.5 shows the

performance of the proposed distributed control algorithm applied to both dimensions simultaneously. Once

again, the position of each agent converges to that of the leader at the user-defined finite time.
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Figure 6.2: Leader-follower performance with the proposed finite-time control algorithm (T = 4 and α = 10)
in the presence of vanishing and non-vanishing uncertainties (dashed line shows the position of the leader
and solid lines show the position of agents).
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Figure 6.3: Control signal of each agent with the proposed finite-time control algorithm (T = 4 and α = 10)
in the presence of vanishing and non-vanishing uncertainties (dashed line shows the position of the leader
and solid lines show the position of agents).
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Figure 6.4: Leader-follower performance with the proposed finite-time control algorithm (T = 4 and α = 10)
in the presence of different system uncertainty scenarios (dashed line shows the position of the leader and
solid lines show the position of agents).
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Figure 6.5: Two dimensional leader-follower performance with the proposed finite-time control algorithm
(T = 4 and α = 10) in the presence of vanishing and non-vanishing uncertainties (dashed line shows the
position of the leader and solid lines show the position of agents).
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6.1.6 Conclusion

To contribute to the previous studies in multiagent systems, we proposed a distributed control

algorithm for achieving a-priori given, user-defined finite-time convergence using the time transformation

approach. Specifically, we first introduced a generalized time transformation function that converts the user-

defined finite-time interval t ∈ [0,T ) to a stretched infinite-time interval s∈ [0,∞), where one can construct a

distributed control algorithm for achieving a given multiagent system objective. Based on the structure of a

time transformation function candidate, we then established the robustness properties of the resulting finite-

time distributed control algorithms against vanishing and non-vanishing system uncertainties. Furthermore,

we showed that, in contrast to the existing finite-time approaches, the proposed distributed control algorithm

can preserve a-priori given, user-defined finite-time convergence regardless of the initial conditions of

the multiagent system and without requiring a knowledge of the upper bounds of the considered class of

system uncertainties. Finally, the efficacy of the presented results was demonstrated through an illustrative

numerical example.

6.2 Further Results on Finite-Time Distributed Control of Multiagent Systems with Time
Transformation2

In previous work, a (smooth) finite-time distributed control algorithm with time transformation was

introduced for first-order multiagent systems, which guarantees convergence of the single state of agents to a

time-varying leader at a-priori given, user-defined time T from any arbitrary initial conditions with bounded

local control signals. In this paper, we present an extension of this previous work to second-order multiagent

systems. Specifically, utilizing a user-defined finite-time interval of interest t ∈ [0,T ), we time transform this

class of multiagent systems subject to the considered (smooth) distributed control algorithm to an infinite-

time interval s ∈ [0,∞) with s being the stretched time. Based on a property of this time transformation, this

results in finite-time convergence as the regular time t approaches to T from any arbitrary initial conditions

with bounded local control and internal signals. Finally, two numerical examples illustrate the efficacy of

the proposed algorithm.

2This section is previously published in [171]. Permission is included in Appendix H.
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6.2.1 Introduction

Finite-time distributed control algorithms have paramount importance to time-critical applications

of multiagent systems such as simultaneous strike and multiagent automation. Yet, a drawback of standard

finite-time algorithms is that their convergence time depends on the initial conditions of agents; hence, a user

cannot assign a desired convergence time with these algorithms. Motivated from this standpoint, [12, 13, 61–

65] study control algorithms with fixed-time convergence ability. While these algorithms can upper bound

the convergence time independently from the initial conditions, the calculated bounds do not necessarily hold

globally and/or can be conservative, or some of these results considering system uncertainties can require

a knowledge of uncertainty upper bounds for stability. To address this problem, [14, 15, 66–71] study

control algorithms that can guarantee convergence at a user-defined finite-time. However, these algorithms

are proposed in the context of either sole systems or first-order multiagent systems, or some of these results

considering system uncertainties can require, once again, a knowledge of uncertainty upper bounds for

stability. We refer to [4, 72, 73] for more details.

Recently, we introduce (smooth) finite-time distributed control algorithm with time transformation

for first-order multiagent systems subject to time-varying graph topologies [72], time-invariant graph topolo-

gies with dynamic equilibrium points [73], and time-invariant graph topologies with dynamic equilibrium

points and system uncertainties [4]. In particular, closely related prior studies to the results of this paper

are documented in [4, 73], which guarantee convergence of the single state of agents to a time-varying

leader at a-priori given, user-defined time T from any arbitrary initial conditions with bounded local control

signals. The former study achieves the convergence without requiring an upper bound on the velocity of this

time-varying leader and the latter study achieves the convergence with structured but otherwise completely

unknown uncertainties (i.e., without resorting to a knowledge of uncertainty upper bounds). In contrast

to the references cited in the first paragraph, [4, 72, 73] utilize a novel time transformation method along

with results from infinite horizon stability theory in their respective finite-time convergence analyses (see

[4, 72, 73] for details).

Building on our previous studies highlighted above, this paper presents further results for second-

order multiagent systems. Specifically, utilizing a user-defined finite-time interval of interest t ∈ [0,T ),

we time transform this class of multiagent systems subject to the considered (smooth) distributed control

algorithm to an infinite-time interval s ∈ [0,∞) with s being the stretched time. Based on a property of this
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time transformation, this results in finite-time convergence as the regular time t approaches to T from any

arbitrary initial conditions with bounded local control and internal signals. Finally, two numerical examples

illustrate the efficacy of the proposed algorithm. We note here that [15, 172–174] consider studies with user-

defined finite-time convergence guarantees for systems beyond first-order dynamics. However, the results

in [15] can be sensitive to system initial conditions and these results are outside the context of multiagent

systems. Moreover, while the results in [172–174] consider second-order multiagent systems and utilize

a time-varying control gain, they neither discuss boundedness of their local control signals nor consider

system uncertainties.

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers,

Rn denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ denotes the

set of positive real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the set of n×n positive-definite (resp., nonnegative-

definite) real matrices, Z+ (resp., Z+) denotes the set of positive (resp., nonnegative) integers, 0n denotes

the n×1 zero vector, 1n denotes the n×1 ones vector, 0n×m denotes the n×m zero matrix, and “,” denotes

equality by definition. In addition, we write (·)T for the transpose function, (·)−1 for the inverse function,

det(·) for the determinant function, and ‖ · ‖2 for the Euclidean norm. Furthermore, we write λi(A) for the

ith eigenvalue of the square matrix A (with eigenvalues ordered from minimum to maximum value), and

[A]i j for the (i, j)th entry of the matrix A.

6.2.2 Problem Formulation

In this section, we first present the problem formulation of this paper. Specifically, we focus on the

leader-follower problem in a multiagent system with N agents exchanging information based on a connected,

undirected graphG (see below for graph-theoretic notions). Note that considering this benchmark problem

is without loss of much generality and the proposed distributed control algorithm can be extended to other

multiagent control problems. Mathematically speaking, we consider that the agents have second-order

dynamics given by

ẋi(t) = vi(t), xi(0) = xi0, (6.43)

v̇i(t) = ui(t), vi(0) = vi0, (6.44)
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where xi(t) ∈ R and vi(t) ∈ R respectively denote the position and velocity of agent i, i ∈ {1,2, . . . ,N}, and

ui(t) ∈ R, is the corresponding control signal.

Next, we consider a leader with second-order dynamics

ẋ0(t) = v0(t), x0(0) = x00, (6.45)

v̇0(t) = a0(t), v0(0) = v00, (6.46)

where x0(t) ∈ R and v0(t) ∈ R respectively denote the position and velocity of the leader. In addition,

a0(t) ∈ R in (6.46) stands for a time-varying, bounded, and piecewise continuous acceleration signal of

the leader (with unknown bound) under the assumption that this signal results in bounded position and

velocity of the leader. Our objective here is to design a distributed control algorithm for achieving finite-

time convergence with a-priori given, user-defined finite time T ∈ R+ ; that is,

lim
t→T

(
xi(t)− x0(t)

)
= 0, i ∈ {1,2, . . . ,N}. (6.47)

We now overview some basic notions from graph theory (see, e.g., [176, 177] for details). In

particular, graphs are broadly adopted in the multiagent systems literature for encoding interactions between

networked systems. An undirected graph G is defined by a set VG = {1, . . . ,N} of nodes and a set EG ⊂

VG×VG of edges. If (i, j) ∈ EG, then nodes i and j are neighbors and the neighboring relation is indicated

by i ∼ j. The degree of a node is given by the number of its neighbors. Letting di denote the degree

of node i, then the degree matrix of a graph G, denoted by D(G) ∈ RN×N , is given by D(G) , diag [d] ,

where d = [d1, . . . ,dN ]
T. A path i0i1 · · · iL of a graph G is a finite sequence of nodes such that ik−1 ∼ ik,

k = 1, . . . ,L, and if every pair of distinct nodes has a path, then the graphG is connected. We write A(G) ∈

RN×N for the adjacency matrix of a graph G defined by [A(G)]i j , 1, if (i, j) ∈ EG, and [A(G)]i j , 0,

otherwise, and B(G) ∈ RN×M for the (node-edge) incidence matrix of a graph G defined by [B(G)]i j , 1,

if node i is the head of edge j, [B(G)]i j , −1, if node i is the tail of edge j, and [B(G)]i j , 0, otherwise,

where M is the number of edges, i is an index for the node set, and j is an index for the edge set. The

graph Laplacian matrix, denoted by L(G) ∈ RN×N
+ , is defined by L(G),D(G)−A(G) or, equivalently,

L(G) = B(G)B(G)T, and the spectrum of the graph Laplacian of a connected, undirected graph G can be

ordered as 0 = λ1(L(G)) < λ2(L(G)) ≤ ·· · ≤ λN(L(G)), with 1N being the eigenvector corresponding to
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the zero eigenvalue λ1(L(G)), and L(G)1N = 0N and eL(G)1N = 1N . Throughout this paper, we model a

given multiagent system by a connected, undirected graphG (nodes and edges respectively represent agents

and inter-agent communication links).

In addition to the above notions from graph theory, the following lemma and remarks are used in

this paper.

Lemma 6.2.1 (Lemma 3.3, [178]) Let K = diag(k), k = [k1,k2, . . . ,kN ]
T, ki ∈ Z+, i = 1, . . . ,N, and assume

that at least one element of k is nonzero. Then, F(G) , L(G) +K ∈ RN×N
+ and det(F(G)) 6= 0 for the

Laplacian of a connected, undirected graph.

Remark 6.2.1 From Lemma 6.2.1, −F(G) is clearly a symmetric and Hurwitz matrix. As a consequence,

−F(G) satisfies the Lyapunov equation R = F(G)P+PF(G) for a given R ∈ RN×N
+ .

Remark 6.2.2 We use a notion from Section 1.1.1.4 of [179]. Specifically, let ξ (t) denote a solution to the

dynamical system

ẋ(t) = f (t,x(t)), x(0) = x0. (6.48)

In addition, let t = θ(s) denote a time transformation, where θ(s) is a strictly increasing and continuously

differentiable function, and define χ(s) = ξ (t). Then,

χ
′(s) = θ

′(s) f (θ(s),χ(s)), χ(θ−1(0)) = x0, (6.49)

where χ ′(s), dχ(s)/ds, and θ ′(s), dθ(s)/ds.

6.2.3 Finite-Time Distributed Control of Second-Order Multiagent Systems with Time Transforma-
tion

In this section, we propose a time transformation-based finite-time distributed control algorithm

for addressing the leader-follower problem stated in Section 6.2.2. To this end, we consider the time

transformation function [72, 73] given by

t = θ(s), T (1− e−s), (6.50)
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where T ∈R+ is the a-priori given, user-defined finite time (see Figure 6.6). Note that this function converts

the infinite-time interval s ∈ [0,∞) to the finite-time interval of interest t ∈ [0,T ) (vice versa), and it has the

derivative with respect to s ∈ [0,∞)

dt
ds

= θ
′(s) = Te−s = T − t. (6.51)

For addressing (6.47), we next introduce the distributed control signal of the form given by

ui(t) = −α
kε +1
(T − t)2

(
∑
i∼ j

(
xi(t)− x j(t)

)
+ ki

(
xi(t)− x0(t)

))

− α

T − t

(
∑
i∼ j

(
vi(t)− v j(t)

)
+ ki

(
vi(t)− v0(t)

))
− kε

T − t
vi(t), i ∈ {1,2, . . . ,N}, (6.52)

where kε ∈ R+ and α ∈ R+ are design parameters. Note that in (6.52), ki = 1 for the subset of the agents

having access to the states of the a time-varying leader in (6.45) and (6.46), and ki = 0 for other agents.

Now, let x̃i(t), xi(t)−x0(t), i∈ {1,2, . . . ,N}, and ṽi(t), vi(t)−v0(t), i∈ {1,2, . . . ,N}, be the position and

the velocity error states, respectively. Furthermore, define an auxiliary state of the form

εi(t) , vi(t)+
α

T − t

(
∑
i∼ j

(
xi(t)− x j(t)

)
+ ki(xi(t)− x0(t))

)

= vi(t)+
α

T − t

(
∑
i∼ j

(
x̃i(t)− x̃ j(t)

)
+ kix̃i(t)

)
, i ∈ {1,2, . . . ,N}. (6.53)

One can now use (6.53) to write the position error dynamics as

˙̃xi(t) = vi(t)− v0(t),

= − α

T − t

(
∑
i∼ j

(
x̃i(t)− x̃ j(t)

)
+ kix̃i(t)

)
+ εi(t)− v0(t), x̃i(0) = x̃i0. (6.54)

The derivative of the auxiliary state in (6.53) satisfies

ε̇i(t) =−
kε

T − t
εi(t), εi(0) = εi0, (6.55)

where (6.52) is used.

We now define the augmented position error state, velocity error state, and the auxiliary state respec-

tively as x̃(t), [x̃1(t), x̃2(t), . . . , x̃N(t)]T ∈RN , ṽ(t), [ṽ1(t), ṽ2(t), . . . , ṽN(t)]T ∈RN , and ε(t), [ε1(t),ε2(t),

. . . ,εN(t)]T ∈ RN . One can then write the system dynamics in (6.54) and (6.55) in the compact form
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Figure 6.6: The time transformation function in (6.50).

˙̃x(t) = − α

T − t
F(G)x̃(t)+ ε(t)−1Nv0(t), x̃(0) = x̃0, (6.56)

ε̇(t) = − kε

T − t
ε(t), ε(0) = ε0. (6.57)

Remark 6.2.3 Considering the time transformation t = θ(s) and any signal η(t), we write ηs(s) to denote

the transformed signal in the interval s for notational simplicity in what follows; that is, ηs(s), η(θ(s)).

Based on the time transformation function in (6.50), let ξ (t) ∈ RN , t ∈ [0,T ), be a solution to the

dynamical system in (6.56) and define x̃s(s) = ξ (t), s ∈ [0,∞). It follows from Remark 6.2.2 that

x̃′s(s) = −αF(G)x̃s(s)+θ
′(s)εs(s)−θ

′(s)1Nv0s(s), x̃s(0) = x̃0, (6.58)

where the subscript s is used; see Remark 6.2.3. As noted in Remark 6.2.2, the solution of (6.56) and (6.58)

are equivalent with different argument domains. Introducing (6.51) in (6.58) yields

x̃′s(s) = −αF(G)x̃s(s)+Te−s(
εs(s)−1Nv0s(s)

)
, x̃s(0) = x̃0, (6.59)

Similarly, one can use the time transformation function in (6.50) to convert (6.57) into the infinite-time

interval given by

ε
′
s(s) = −kεεs(s), εs(0) = ε0. (6.60)

As a consequence, the solution of the auxiliary state in the infinite-time horizon can be written as

εs(s) = ε0e−kε s. (6.61)
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Using (6.61) in (6.59) yields

x̃′s(s) = −αF(G)x̃s(s)+ e−s
β (s), x̃s(0) = x̃0, (6.62)

where β (s), T (ε0e−kε s−1Nv0s(s)) is a bounded function (i.e., ‖β (s)‖2 ≤ β ). For the following result, we

also define

R, αF(G)−2IN ∈ RN×N . (6.63)

Theorem 6.2.1 Consider the multiagent system that consists of N agents on a connected, undirected graph

G, where the agents have the second-order dynamics given by (6.43) and (6.44). Furthermore, assume that

there exists at least one agent exchanging information with the leader with bounded position and velocity

given by (6.45) and (6.46), where this leader is subject to a bounded but otherwise unknown acceleration

signal. Based on the distributed control algorithm ui(t), i = 1, . . . ,N, for each agent given by (6.52), let

the design parameter α be chosen to make R in (6.63) positive definite and kε > 1. Then, the closed-loop

system signals including the control and internal signals remain bounded and all agents’ positions converge

to the position of the leader in the a-priori given, user-defined finite time T (i.e., limt→T x̃(t) = 0) for all

initial conditions of agents.

Next, we discuss robustness of the proposed distributed control algorithm against non-vanishing,

time-dependent system uncertainties (i.e., external disturbances). To this end, consider the second-order

agent dynamics given by

ẋi(t) = vi(t), xi(0) = xi0, (6.64)

v̇i(t) = ui(t)+ρi(t), vi(0) = vi0, (6.65)

where ρi(t) ∈ R represents external disturbances in the dynamics of each agent. For well-posedness of the

considered problem, we here assume that ρi(t) and ρ̇i(t) are bounded but we do not require a knowledge of

their upper bounds.

One can write the derivative of the auxiliary state in (6.53) as

ε̇i(t) = − kε

T − t
εi(t)+ρi(t), εi(0) = εi0, (6.66)
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where (6.52) is used. Here, (6.66) can also be compactly written as

ε̇(t) = − kε

T − t
ε(t)+ρ(t), ε(0) = ε0, (6.67)

with ρ(t), [ρ1(t),ρ2(t), . . . ,ρN(t)]T ∈ RN . Using the time transformation function (6.50), one can convert

(6.67) to the infinite-time interval as

ε
′
s(s) = −kεεs(s)+Te−s

ρs(s), εs(0) = ε0. (6.68)

We can now augment the system dynamics in (6.59) and (6.68) as




x̃′s(s)

ε ′s(s)


 =



−αF Te−sIN

0N×N −kε IN







x̃s(s)

εs(s)


+Te−s



−1Nv0s(s)

ρs(s)


 ,




x̃s(0)

εs(0)


=




x̃0

ε0


 . (6.69)

Theorem 6.2.2 Consider the multiagent system that consists of N agents on a connected, undirected graph

G, where the agents have the second-order dynamics as given by (6.64) and (6.65) having non-vanishing

external disturbances. Furthermore, assume that there exists at least one agent exchanging information

with the leader with bounded position and velocity given by (6.45) and (6.46), where this leader is subject

to a bounded but otherwise unknown acceleration signal. Based on the distributed control algorithm ui(t),

i = 1, . . . ,N, for each agent given by (6.52), let the design parameter α be chosen to make R in (6.63)

positive definite and kε > 1. Then, the closed-loop system signals including the control signals remain

bounded and all agents’ positions converge to the position of the leader in the a-priori given, user-defined

finite time T (i.e., limt→T x̃(t) = 0) for all initial conditions of agents and for all finite ρi(t), i ∈ {1, . . . ,N}.

The proof of the above results will be reported elsewhere.

6.2.4 Illustrative Numerical Examples

In this section, we present two numerical examples to demonstrate the utility and efficacy of the

proposed distributed control algorithm for achieving user-defined finite-time convergence guarantees.
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Figure 6.7: An example multiagent system on an undirected, connected line graphG1.

6.2.5 Example 1

Consider a multiagent systems that consists of N = 8 agents exchanging information based on an

undirected, connected line graphG1 as shown in Figure 6.7, where agents 4 and 5 have access to the position

and velocity of the leader given by ẋ0(t) = v0(t), v̇0(t) =−2x0(t) (i.e., ki = 1 for i ∈ {4,5} and ki = 0 for the

rest of the agents in (6.52)). We note that the initial positions and velocities of the agents are respectively

selected randomly in the intervals [0,2] and [-2,0].

For the proposed distributed control algorithm, we use the time transformation function given in

(6.50) with T = 5 in order to enforce the finite-time convergence value equal to 5 seconds and we set kε = 10

and α = 20 that results in a positive definite matrix R in (6.63). Figures 6.8 and 6.9 show the performance

of the proposed distributed control algorithm in the absence of external disturbances. As expected from

Theorem 6.2.1, the position of each agent converges to that of the leader at the chosen user-defined finite

time with bounded agent states and control signals.

In order to demonstrate the robustness of the proposed algorithm to external disturbances, we now

consider that the non-vanishing external disturbances satisfy ρi(t) = 0.5sin(2t), i ∈ {1, . . . ,8}. Figures 6.10

and 6.11 show the performance of the proposed distributed control algorithm in the presence of external

disturbances. As expected from Theorem 6.2.2, the position of each agent once again converges to that of

the leader at the chosen user-defined finite time with bounded agent states and control signals.

Finally, for illustrating the robustness of the proposed distributed control algorithm to different

initial conditions and different non-vanishing external disturbances, consider four additional external distur-

bance scenarios as
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Figure 6.8: Leader-follower performance with the proposed finite-time control algorithm (T = 5, kε = 10
and α = 20) in the absence of external disturbances in Example 1 (dashed line shows the position and
velocity of the leader and solid lines show those of the agents).
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Figure 6.9: Control signal of each agent with the proposed finite-time control algorithm in Example 1 (T = 5,
kε = 10 and α = 20) in the absence of external disturbances.
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Figure 6.10: Leader-follower performance with the proposed finite-time control algorithm (T = 5, kε = 10
and α = 20) in the presence of non-vanishing uncertainties in Example 1 (dashed line shows the position
and velocity of the leader and solid lines show those of the agents).
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Figure 6.11: Control signal of each agent with the proposed finite-time control algorithm in Example 1
(T = 5, kε = 10 and α = 20) in the presence of non-vanishing uncertainties.
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A: ρi(t) = 0, B: ρi(t) = 2sin(4t), (6.70)

C: ρi(t) = 3sin(0.5t), D: ρi(t) = −5sin(2t). (6.71)

Furthermore, the initial position and velocity of the agents are selected randomly respectively in the intervals

[6,8] and [−8,−6] for scenario A, [2,4] and [−4,−2] for scenario B, [−4,−2] and [2,4] for scenario C, and

[−8,−6] and [6,8] for scenario D. Figures 6.13 and 6.14 show that in all of these scenarios the proposed

algorithm can preserve the user-defined finite-time convergence, regardless of the initial conditions of the

agents and without requiring the knowledge of the upper bounds of the external disturbances.

6.2.6 Example 2

In this example, we analyze the proposed control algorithm on a different graph topology by con-

sidering a multiagent systems that consists of N = 8 agents exchanging information based on an undirected,

connected line graph G2 as shown in Figure 6.12, where agents 4 and 5 have access to the position and

velocity of the leader given by ẋ0(t) = v0(t), v̇0(t) = −2x0(t) (i.e., ki = 1 for i ∈ {4,5}, and ki = 0 for the

rest of the agents in (6.52)). Similar to the Example 1, the initial positions and velocities of the agents are

respectively selected randomly in the intervals [0,2] and [-2,0].

For the proposed distributed control algorithm, we use the time transformation function given in

(6.50) with T = 5 in order to enforce the finite-time convergence value equal to 5 seconds and we similarly

set kε = 10 and α = 20 that results in a positive definite matrix R in (6.63). Figures 6.15 and 6.16 show
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Figure 6.12: An example multiagent system on an undirected, connected line graphG2.
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Figure 6.13: Leader-follower performance with the proposed finite-time control algorithm (T = 5, kε = 10
and α = 20) in the presence of different external disturbance scenarios in Example 1 (dashed line shows the
position and velocity of the leader and solid lines show those of the agents).

Figure 6.14: Control signal of each agent with the proposed finite-time control algorithm in Example 1
(T = 5, kε = 10 and α = 20) in the presence of different external disturbance scenarios.
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the performance of the proposed distributed control algorithm in the absence of external disturbances. Once

again, as expected from Theorem 6.2.1, the position of each agent converges to that of the leader at the

chosen user-defined finite time with bounded agent states and control signals.

Similar to the Example 1, in order to demonstrate the robustness of the proposed algorithm to exter-

nal disturbances, we now consider that the non-vanishing external disturbances satisfy ρi(t) = 0.5sin(2t), i∈

{1, . . . ,8}. Figures 6.17 and 6.18 show the performance of the proposed distributed control algorithm in the

presence of external disturbances. As expected from Theorem 6.2.2, the position of each agent once again

converges to that of the leader at the chosen user-defined finite time with bounded agent states and control

signals.

Finally, for illustrating the robustness of the proposed distributed control algorithm to different

initial conditions and different non-vanishing external disturbances, we consider four additional external

disturbance scenarios as given in (6.70) and (6.71) in Example 1. Figures 6.19 and 6.20 show that in all of

these scenarios the proposed algorithm can preserve the user-defined finite-time convergence, regardless of

Figure 6.15: Leader-follower performance with the proposed finite-time control algorithm (T = 5, kε = 10
and α = 20) in the absence of external disturbances in Example 2 (dashed line shows the position and
velocity of the leader and solid lines show those of the agents).
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Figure 6.16: Control signal of each agent with the proposed finite-time control algorithm in Example 2
(T = 5, kε = 10 and α = 20) in the absence of external disturbances.

Figure 6.17: Leader-follower performance with the proposed finite-time control algorithm (T = 5, kε = 10
and α = 20) in the presence of non-vanishing uncertainties in Example 2 (dashed line shows the position
and velocity of the leader and solid lines show those of the agents).
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Figure 6.18: Control signal of each agent with the proposed finite-time control algorithm in Example 2
(T = 5, kε = 10 and α = 20) in the presence of non-vanishing uncertainties.

Figure 6.19: Leader-follower performance with the proposed finite-time control algorithm (T = 5, kε = 10
and α = 20) in the presence of different external disturbance scenarios in Example 2 (dashed line shows the
position and velocity of the leader and solid lines show those of the agents).

262



www.manaraa.com

Figure 6.20: Control signal of each agent with the proposed finite-time control algorithm in Example 2
(T = 5, kε = 10 and α = 20) in the presence of different external disturbance scenarios.

the initial conditions of the agents and without requiring the knowledge of the upper bounds of the external

disturbances.

6.2.7 Conclusion

Further results on finite-time distributed control of multiagent systems with time transformation

were reported. In particular, second-order multiagent systems with a (smooth) finite-time distributed control

algorithm were considered and it was discussed through time transformation-based methods that the position

state of agents converge to the position of a time-varying leader at a-priori-given, user-defined time from

any arbitrary initial conditions with bounded local control and internal signals. Two illustrative numerical

examples were also presented in order to demonstrate the efficacy of our results. Building on the contribution

of this paper, future research can include generalizations to directed graph topologies as well as agents

having higher state dynamics.
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CHAPTER 7: MITIGATING THE EFFECTS OF SENSOR UNCERTAINTIES IN NETWORKED

MULTIAGENT SYSTEMS1

Networked multiagent systems consist of interacting agents that locally exchange information,

energy, or matter. Since these systems do not in general have a centralized architecture to monitor the activity

of each agent, resilient distributed control system design for networked multiagent systems is essential in

providing high system performance, reliability, and operation in the presence of system uncertainties. An

important class of such system uncertainties that can significantly deteriorate the achievable closed-loop

system performance is sensor uncertainties, which can arise due to low sensor quality, sensor failure,

sensor bias, or detrimental environmental conditions. This paper presents a novel distributed adaptive

control architecture for networked multiagent systems with undirected communication graph topologies to

mitigate the effect of sensor uncertainties. Specifically, we consider agents having identical high-order,

linear dynamics with agent interactions corrupted by unknown exogenous disturbances. We show that

the proposed adaptive control architecture guarantees asymptotic stability of the closed-loop dynamical

system when the exogenous disturbances are time-invariant and uniform ultimate boundedness when the

exogenous disturbances are time-varying. Two numerical examples are provided to illustrate the efficacy of

the proposed distributed adaptive control architecture.

7.1 Introduction

Networked multiagent systems (e.g., communication networks, power systems, and process control

systems) consist of interacting agents that locally exchange information, energy, or matter [162, 176, 181,

182]. These systems require a resilient distributed control system design architecture for providing high sys-

tem performance, reliability, and operation in the presence of system uncertainties [183–187]. An important

class of such system uncertainties that can significantly deteriorate achievable closed-loop dynamical system

performance is sensor uncertainties, which can arise due to low sensor quality, sensor failure, sensor bias, or

1This chapter is previously published in [180]. Permission is included in Appendix H.
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detrimental environmental conditions [74–77]. If relatively cheap sensor suites are used for low-cost, small-

scale unmanned vehicle applications, then this can result in inaccurate sensor measurements. Alternatively,

sensor measurements can be corrupted by malicious attacks if these dynamical systems are controlled

through large-scale, multilayered communication networks as in the case of cyber-physical systems.

Early approaches that deal with sensor uncertainties focus on classical fault detection, isolation, and

recovery schemes (see, for example, [188, 189]). In these approaches sensor measurements are compared

with an analytical model of the dynamical system by forming a residual signal and analyzing this signal

to determine if a fault has occurred. However, in practice it is difficult to identify a single residual signal

per failure mode, and as the number of failure modes increase this becomes prohibitive. In addition, a

common underlying assumption of the classical fault detection, isolation, and recovery schemes is that all

dynamical system signals remain bounded during the fault detection process, which may not always be a

valid assumption.

More recently, the authors of [190] consider the fundamental limitations of attack detection and

identification methods for linear systems. However, their approach is not only computationally expensive

but also it is not linked to the controller design. In [191], adversarial attacks on actuator and sensors are

modeled as exogenous disturbances. However, the presented control methodology cannot address situations

where more than half of the sensors are compromised and the set of attacked nodes change over time.

Finally, the authors in [192] analyze a case where the interaction between networked agents are corrupted

by exogenous disturbances. However, their approach is limited to agents having scalar dynamics and is not

linked to the controller design in order to mitigate the effect of such sensor uncertainties.

In this paper, we present a novel distributed adaptive control architecture for networked multiagent

systems with undirected communication graph topologies to mitigate the effect of sensor uncertainties.

Specifically, we consider multiagent systems having identical high-order, linear dynamics with agent interac-

tions corrupted by unknown exogenous disturbances. We show that the proposed adaptive control architec-

ture guarantees asymptotic stability of the closed-loop dynamical system when the exogenous disturbances

are time-invariant and uniform ultimate boundedness when the exogenous disturbances are time-varying. A

preliminary conference version of this paper appeared in [193]. The present paper considerably expands on

[193] by providing detailed proofs of all the results along with additional examples and motivation.

The contents of the paper are as follows. In Section 7.1, we present mathematical preliminaries and

give the problem formulation. In Section 7.2.2, we develop a distributed adaptive control architecture for
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the case of time-invariant sensor uncertainties, whereas Section 7.2.2 extends this architecture to the case

of time-varying sensor uncertainties. Two illustrative examples are provided in Section 7.5 and conclusions

are drawn in Section 7.6.

7.2 Mathematical Preliminaries and Problem Formulation

7.2.1 Mathematical Preliminaries

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers, Rn

denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ denotes the set

of positive real numbers, Pn (resp., Nn) denotes the set of n×n positive definite (resp., nonnegative definite)

real matrices, 0n denotes the n× 1 zero vector, 1n denotes the n× 1 ones vector, 0n×m denotes the n×m

zero matrix, and “,” denotes equality by definition. In addition, we write (·)T for the transpose operator,

(·)−1 for the inverse operator, det(·) for the determinant operator, (·)′ for the Frechet derivative, ‖ · ‖2 for

the Euclidean norm, and ⊗ for the Kronecker product. Furthermore, we write λmin(A) (resp., λmax(A)) for

the minimum (resp., maximum) eigenvalue of the square matrix A, λi(A) for the ith eigenvalue of the square

matrix A (with eigenvalues ordered from minimum to maximum value), spec(A) for the spectrum of the

square matrix A including multiplicity, [A]i j for the (i, j)th entry of the matrix A, and x (resp., x) for the

lower bound (resp., upper bound) of a bounded signal x(t) ∈ Rn, t ≥ 0, that is, x ≤ ‖x(t)‖2, t ≥ 0 (resp.,

‖x(t)‖2 ≤ x, t ≥ 0).

Next, we recall some basic notions from graph theory, where we refer the reader to [176, 177]

for further details. Specifically, graphs are broadly adopted in the multiagent systems literature to encode

interactions between networked systems. An undirected graph G is defined by a set VG = {1, . . . ,N} of

nodes and a set EG ⊂ VG×VG of edges. If (i, j) ∈ EG, then nodes i and j are neighbors and the neighboring

relation is indicated by i ∼ j. The degree of a node is given by the number of its neighbors. Letting di

denote the degree of node i, then the degree matrix of a graph G, denoted by D(G) ∈ RN×N , is given by

D(G) , diag [d] , where d = [d1, . . . ,dN ]
T. A path i0i1 · · · iL of a graphG is a finite sequence of nodes such

that ik−1 ∼ ik, k = 1, . . . ,L, and if every pair of distinct nodes has a path, then the graphG is connected. We

write A(G) ∈ RN×N for the adjacency matrix of a graphG defined by

[A(G)]i j ,





1, if (i, j) ∈ EG,

0, otherwise,
(7.1)
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and B(G) ∈ RN×M for the (node-edge) incidence matrix of a graphG defined by

[B(G)]i j ,





1, if node i is the head of edge j,

−1, if node i is the tail of edge j,

0, otherwise,

(7.2)

where M is the number of edges, i is an index for the node set, and j is an index for the edge set.

The graph Laplacian matrix, denoted by L(G) ∈NN , is defined by L(G),D(G)−A(G) or, equiv-

alently, L(G)=B(G)B(G)T, and the spectrum of the graph Laplacian of a connected, undirected graphG can

be ordered as 0 = λ1(L(G)) < λ2(L(G)) ≤ ·· · ≤ λN(L(G)), with 1N being the eigenvector corresponding

to the zero eigenvalue λ1(L(G)), and L(G)1N = 0N and eL(G)1N = 1N . Finally, we partition the incidence

matrix B(G) =
[
BL(G)

T,BF(G)
T]T, where BL(G) ∈RNL×M, BF(G) ∈RNF×M, NL +NF = N, and NL and NF,

respectively denote the cardinalities of the leader and follower groups [176]. Furthermore, without loss of

generality, we assume that the leader agents are indexed first and the follower agents are indexed last in the

graphG so that L(G) = B(G)B(G)T is given by

L(G) =




L(G) G(G)T

G(G) F(G)


 , (7.3)

where L(G), BL(G)BL(G)
T, G(G), BF(G)BL(G)

T, and F(G), BF(G)BF(G)
T. Note that F(G) ∈ PNF for

a connected, undirected graph G and satisfies F(G)1NF = −G(G)1NL . This implies that each row sum of

−F(G)−1G(G) is equal to 1.

7.2.2 Problem Formulation

Consider a networked multiagent system consisting of N agents with the dynamics of agent i, i ∈

{1, . . . ,N}, given by

ẋi(t) = Axi(t)+Bui(t), xi(0) = xi0, t ≥ 0, (7.4)

where xi(t) ∈ Rn, t ≥ 0, is the state vector of agent i, ui(t) ∈ Rm, t ≥ 0, is the control input of agent i, and

A ∈ Rn×n and B ∈ Rn×m are system matrices. We assume that the pair (A,B) is controllable and the control

267



www.manaraa.com

input ui(·), i = 1, . . . ,N, is restricted to the class of admissible controls consisting of measurable functions

such that ui(t) ∈ Rm, t ≥ 0. In addition, we assume that the agents can measure their own state and can

locally exchange information via a connected, undirected graphGwith nodes and edges representing agents

and interagent information exchange links, respectively, resulting in a static network topology; that is, the

time evolution of the agents do not result in edges appearing or disappearing in the network.

Here, we consider a networked multiagent system, where the agents lie on an agent layer and their

local controllers lie on a control layer as depicted in Figure 7.1. Furthermore, we assume that the graph

for the controller structure is the same as the graph for the agents’ communication. Specifically, agent

i ∈ {1, . . . ,N} sends its state measurement to its corresponding local controller at a given control layer and

this controller sends its control input to agent i lying on the agent layer. In addition, we assume that the

compromised state measurement

x̃i(t) = xi(t)+δi(t), i = 1, . . . ,N, (7.5)

is available to the local controller and the neighboring agents of agent i ∈ {1, . . . ,N}, where x̃i(t) ∈ Rn,

t ≥ 0, and δi(t) ∈ Rn, t ≥ 0, captures sensor uncertainties. In particular, if δi(·) is nonzero, then the state

vector xi(t), t ≥ 0, of agent i ∈ {1, . . . ,N} is corrupted with a faulty or malicious signal δi(·). Alternatively,

if δi(·) is zero, then x̃i(t) = xi(t), t ≥ 0, and the uncompromised state measurement is available to the local

controller of agent i ∈ {1, . . . ,N}.

b

b

bxi(t)

Control Layer

Agent Layer

x̃i(t)

b

b

b

b

b

bcx0(t)

Figure 7.1: A networked multiagent system with agents lying on an agent layer and their local controllers
lying on a control layer.
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Given the two-layer networked multiagent system hierarchy, we are interested in the problem of

asymptotically (or approximately) driving the state vector of each agent xi(t), i = 1, . . . ,N, t ≥ 0, to the state

vector of a (virtual) leader x0(t) ∈ Rn, t ≥ 0, that lies on the control layer with dynamics

ẋ0(t) = A0x0(t), x0(0) = x00, t ≥ 0, (7.6)

where A0 ∈ Rn×n is Lyapunov stable and is given by A0 , A−BK0 with K0 ∈ Rm×n.

For the case where the uncompromised state measurement is available to the local controller of

agent i ∈ {1, . . . ,N}, that is, δi(t)≡ 0, then the controller

ui(t) =−K0xi(t)− cK

[
li
(
xi(t)− x0(t)

)
+∑

i∼ j

(
xi(t)− x j(t)

)
]
, (7.7)

guarantees that limt→∞ xi(t) = x0(t) for all i = 1, . . . ,N, where li = 1 for a set of NL agents that have access

to the state of the leader x0(t), t ≥ 0, and li = 0 for the remaining NF agents with N = NL +NF, and where

K ∈ Rm×n and c ∈ R+ denote an appropriate feedback gain matrix and coupling strength, respectively, such

that Aξ , A0−ηicBK is Hurwitz for all ηi ∈ spec(F(G)). To see this, let ξi(t), xi(t)− x0(t) and note that

using (7.4), (7.6), and (7.7),

ξ̇i(t) = A0ξi(t)− cBK

[
liξi(t)+∑

i∼ j

(
ξi(t)−ξ j(t)

)
]
, ξi(0) = ξi0, t ≥ 0, (7.8)

with ξi0 , xi0−x0. In addition, defining the augmented state ξ (t), [ξ T
1 (t), . . . ,ξ

T
N (t)]

T, (7.8) can be written

in compact form as

ξ̇ (t) =
[
IN⊗A0− cF(G)⊗BK

]
ξ (t), ξ (0) = ξ0, t ≥ 0. (7.9)

Now, using the results in [187, 194, 195], it can be shown that IN⊗A0−cF(G)⊗BK is Hurwitz when Aξ is

Hurwitz for all ηi ∈ spec(F(G)). Hence, limt→∞ ξ (t) = 0, that is, limt→∞ xi(t) = x0(t) for all i = 1, . . . ,N.

For δ (·) 6= 0, our objective is to design a local controller for each agent i ∈ {1, . . . ,N} of the form

ui(t) =−K0x̃i(t)− cK

[
li
(
x̃i(t)− x0(t)

)
+∑

i∼ j

(
x̃i(t)− x̃ j(t)

)
]
+ vi(t), (7.10)
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where vi(t) ∈ Rm, t ≥ 0, is a local corrective signal that suppresses or counteracts the effect of δi(t), t ≥ 0,

to asymptotically (or approximately) recover the ideal system performance (i.e., limt→∞ xi(t) = x0(t) for all

i = 1, . . . ,N) that is achieved when the state vector is available for feedback. Thus, assuming that Aξ is

Hurwitz for all ηi ∈ spec(F(G)) implies that there exists an ideal system performance that can be recovered

by designing the local corrective signals vi(t) ∈ Rm, t ≥ 0, for each agent i ∈ {1, . . . ,N}. Although we

consider this specific problem in this paper, the proposed approach dealing with sensor uncertainties can be

used in many other problems that exist in the networked multiagent systems literature [176, 182].

7.3 Adaptive Leader Following with Time-Invariant Sensor Uncertainties

In this section, we design the local corrective signal vi(t), i = 1, . . . ,N, t ≥ 0, in (7.10) to achieve

asymptotic adaptive leader following in the presence of time-invariant sensor uncertainties, that is, δi(t)≡ δi,

i = 1, . . . ,N, t ≥ 0. For this problem, we propose the corrective signal

vi(t) = K0δ̂i(t)+ cK

[
liδ̂i(t)+∑

i∼ j

(
δ̂i(t)− δ̂ j(t)

)
]
, (7.11)

where

˙̂
δi(t) = −γATP

(
x̃i(t)− x̂i(t)− δ̂i(t)

)
, δ̂i(0) = δ̂i0, t ≥ 0, (7.12)

˙̂xi(t) = A0x̂i(t)− cBK

[
li
(
x̂i(t)− x0(t)

)
+∑

i∼ j

(
x̂i(t)− x̂ j(t)

)
]
+
(
γATP+µIn

)(
x̃i(t)− x̂i(t)− δ̂i(t)

)
,

x̂i(0) = x̂i0, t ≥ 0, (7.13)

δ̂i(t) ∈ Rn, t ≥ 0, is the estimate of the sensor uncertainty δi(t), t ≥ 0, x̂i(t) ∈ Rn, t ≥ 0, is the state estimate

of the uncompromised state vector xi(t), t ≥ 0, γ ∈R+ and µ ∈R+ are design gains, and P∈ Pn is a solution

to the linear matrix inequality (LMI) given by

IN⊗ (AT
0 P+PA0−2µP)− cF(G)⊗ (KTBTP+PBK)< 0. (7.14)

For the statement of next result, we note from (7.4) and (7.10) that

ẋi(t) = Axi(t)−BK0xi(t)− cBK

[
li
(
xi(t)− x0(t)

)
+∑

i∼ j

(
xi(t)− x j(t)

)
]

−cBK ∑
i∼ j

(
δi−δ j

)
−B
(
cliK +K0

)
δi +Bvi(t), xi(0) = xi0, t ≥ 0. (7.15)
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Now, define x(t), [xT
1 (t), . . . ,x

T
N(t)]

T, δ , [δ T
1 , . . . ,δ

T
N ]

T, and v(t), [v1(t), . . . ,vN(t)]T, and note that (7.15)

can be written in a compact form as

ẋ(t) = [IN⊗A0− cF(G)⊗BK]x(t)+(cG(G)⊗BK)x0(t)−
(
cF(G)⊗BK + IN⊗BK0

)
δ

+(IN⊗B)v(t), x(0) = x0, t ≥ 0. (7.16)

Using (7.5) and (7.16), the dynamics for x̃(t), t ≥ 0, with x̃(t) , [x̃T
1 (t), . . . , x̃

T
N(t)]

T, can also be written in

compact form as

˙̃x(t) = [IN⊗A0− cF(G)⊗BK]x̃(t)+(cG(G)⊗BK)x0(t)− (IN⊗A)δ

+(IN⊗B)v(t), x̃(0) = x̃0, t ≥ 0. (7.17)

Next, letting x̂(t), [x̂T
1 (t), . . . , x̂

T
N(t)]

T, a compact form for the dynamics of x̂(t), t ≥ 0, is given by

˙̂x(t) = [IN⊗A0− cF(G)⊗BK]x̂(t)+(cG(G)⊗BK)x0(t)−
(
cF(G)⊗BK + IN⊗BK0

)
δ̂ (t)

+(IN⊗B)v(t)+φ(t), x̂(0) = x̂0, t ≥ 0, (7.18)

where φ(t), [φ T
1 (t), . . . ,φ

T
N (t)]

T with φi(t),− ˙̂
δi(t)+µei(t). Finally, define ei(t), x̃i(t)− x̂i(t)− δ̂i(t) and

δ̃i(t), δi− δ̂i(t), and note that

ė(t) = (Ar−µInN)e(t)− (IN⊗A)δ̃ (t), e(0) = e0, t ≥ 0, (7.19)

˙̃
δ (t) = (IN⊗ γATP)e(t), δ̃ (0) = δ̃0, t ≥ 0, (7.20)

where Ar , IN⊗A0− cF(G)⊗BK, e(t), [eT
1 (t), . . . ,e

T
N(t)]

T, and δ̃ (t), [δ̃ T
1 (t), . . . , δ̃

T
N (t)]

T.

Theorem 7.3.1 Consider the networked multiagent system consisting of N agents on a connected, undi-

rected graph G, where the dynamics of agent i ∈ {1, . . . ,N} is given by (7.4). In addition, assume that the

local controller ui(t), i = 1, . . . ,N, t ≥ 0, for each agent is given by (7.10) with the corrective signal vi(t),

i = 1, . . . ,N, t ≥ 0, given by (7.11). Moreover, assume that δi(t)≡ δi, t ≥ 0, and det(A) 6= 0. Then, the zero

solution
(
e(t), δ̃ (t)

)
≡
(
0,0
)

of the closed-loop system given by (7.19) and (7.20) is Lyapunov stable and

limt→∞ e(t) = 0 and limt→∞ δ̃ (t) = 0 for all
(
e0, δ̃0

)
∈ RnN×RnN .
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Proof. To show Lyapunov stability of the zero solution
(
e(t), δ̃ (t)

)
≡
(
0,0
)

of the closed-loop

system given by (7.19) and (7.20), consider the Lyapunov function candidate given by

V
(
e, δ̃
)
=

N

∑
i=1

(eT
i Pei + γ

−1
δ̃

T
i δ̃i) = eT(IN⊗P)e+ γ

−1
δ̃

T
δ̃ , (7.21)

where P is a solution to the LMI given by (7.14). Note that V (0,0) = 0, V
(
e, δ̃
)
> 0 for all

(
e, δ̃
)
6= (0,0),

and V
(
e, δ̃
)

is radially unbounded. The time derivative of (7.21) along the trajectories of (7.19) and (7.20)

is given by

V̇
(
e(t), δ̃ (t)

)
= eT(t)

(
IN⊗ (AT

0 P+PA0−2Pµ)− cF(G)⊗ (KTBTP+PBK)

)
e(t)≤ 0, t ≥ 0. (7.22)

Hence, the zero solution
(
e(t), δ̃ (t)

)
≡
(
0,0
)

of the closed-loop system given by (7.19) and (7.20) is Lya-

punov stable for all
(
e0, δ̃0

)
∈ RnN×RnN .

To show limt→∞ e(t) = 0, note that V̈
(
e(t), δ̃ (t)

)
= 2eT(t)

[
IN ⊗ (AT

0 P + PA0 − 2Pµ)− cF(G)⊗

(KTBTP+PBK)
]
ė(t). Now, it follows from the Lyapunov stability of the zero solution

(
e(t), δ̃ (t)

)
≡ (0,0)

of (19) and (20), and the boundedness of ė(t), t ≥ 0, that V̈
(
e(t), δ̃ (t)

)
is bounded for all t ≥ 0. Thus,

V̇
(
e(t), δ̃ (t)

)
, t ≥ 0, is uniformly continuous in t. Now, it follows from Barbalat’s lemma [109] that

limt→∞ V̇
(
e(t), δ̃ (t)

)
= 0, and hence, limt→∞ e(t) = 0. Finally, to show limt→∞ δ̃ (t) = 0, defineR, {(e, δ̃ ) :

V̇ (e, δ̃ ) = 0} and letM be the largest invariant set contained in R. In this case, it follows from (7.19) that

(IN⊗A)δ̃ = 0, and hence, δ̃ = 0 since det(A) 6= 0. Thus,
(
e(t), δ̃ (t)

)
→M= {(0,0)} as t→ ∞. �

Remark 7.3.1 It follows from (7.4), (7.10), and (7.11) that

ẋi(t) = A0xi(t)− cBK

[
li
(
xi(t)− x0(t)

)
+∑

i∼ j

(
xi(t)− x j(t)

)
]
−BK0δ̃i(t)

−cBK

[
liδ̃i(t)+∑

i∼ j

(
δ̃i(t)− δ̃ j(t)

)
]
, xi(0) = xi0, t ≥ 0, (7.23)

which, using the boundedness of δ̃i(t), i = 1, . . . ,N, t ≥ 0, and the assumption that Aξ is Hurwitz for all

ηi ∈ spec(F(G)), implies that xi(t) is bounded for all t ≥ 0 and i ∈ {1, . . . ,N}. Hence, using (7.5), x̃i(t) is

bounded for all t ≥ 0 and i ∈ {1, . . . ,N}. Furthermore, since ei(t), t ≥ 0, x̃i(t), t ≥ 0, and δ̂i(t), t ≥ 0, are

bounded for all i ∈ {1, . . . ,N}, it follows that x̂i(t) is bounded for all t ≥ 0 and i ∈ {1, . . . ,N}.
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Remark 7.3.2 Since, by Theorem 7.3.1, limt→∞ δ̃ (t) = 0 it follows from (7.23) that each agent subject to the

dynamics given by (7.4) asymptotically recovers the ideal system performance (i.e., limt→∞ xi(t) = x0(t) for

all i = 1, . . . ,N), which is a direct consequence of the discussion given in Section 7.2.2 and the assumption

that Aξ is Hurwitz for all ηi ∈ spec(F(G)), i = 1, . . . ,N. In addition, limt→∞ e(t) = 0 and limt→∞ δ̃ (t) =

0 imply that limt→∞

(
x(t)− x̂(t)

)
= 0, which shows that the state estimate x̂(t), t ≥ 0, converges to the

uncompromised state measurement x(t), t ≥ 0.

Remark 7.3.3 It is important to note that the local controller ui(t) and corrective signal vi(t), i = 1, . . . ,N,

t ≥ 0, are independent of the system initial conditions. The same remark holds for Theorem 7.4.1 below.

Let Q ∈ Pm, set K = Q−1BTP, and assume that Aξ is Hurwitz for all ηi ∈ spec(F(G)), i = 1, . . . ,N

for the given selection of K. Substituting K = Q−1BTP in (7.14) yields

IN⊗ (AT
0 P+PA0−2µP)−2cF(G)⊗ (PBQ−1BTP)< 0. (7.24)

Let T be such that T F(G)T−1 = J, where J is the Jordan form of F(G). Multiplying (7.24) by T ⊗ IN from

the left and by T−1⊗ IN from the right yields

(T ⊗ IN)(IN⊗ (AT
0 P+PA0−2µP))(T−1⊗ IN)−2(T ⊗ IN)(cF(G)⊗ (PBQ−1BTP))(T−1⊗ IN)< 0, (7.25)

which can be equivalently written as

IN⊗ (AT
0 P+PA0−2µP)−2cJ⊗ (PBQ−1BTP)< 0. (7.26)

Note that since F(G) is symmetric, F(G) is real diagonalizable. Hence, the diagonal form of J allows one

to rewrite (7.26) as

AT
0 P+PA0−2µP−2cηiPBQ−1BTP < 0, (7.27)

where ηi ∈ spec(F(G)), i = 1, . . . ,N. Now, letting the coupling strength be such that c ≥ 1
min{ηi} , i =

1, . . . ,N, it follows from (7.27), using the results in [196], that

AT
0 P+PA0−2µP−2cηiPBQ−1BTP≤ AT

0 P+PA0−2µP−2PBQ−1BTP, (7.28)
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since −cηi ≤−1, i = 1, . . . ,N, and hence, one can equivalently solve the LMI

(A0−µIn)
TP+P(A0−µIn)−2PBQ−1BTP < 0 (7.29)

to obtain P ∈ Pn rather than the LMI given by (7.14).

Remark 7.3.4 By setting S, P−1 [197], the LMI given by (7.29) can be further simplified to

(A0−µIn)S+S(A0−µIn)
T−2BQ−1BT < 0. (7.30)

Thus, one can alternatively solve (7.30) for S ∈ Pn and then set P = S−1 to obtain P ∈ Pn for (7.12) and

(7.13). Note that since one can solve (7.30) instead of (7.14), the computational complexity does not

increase as the number of agents gets large.

Finally, note that in this paper we consider the case where each agent is subject to sensor uncer-

tainties. If, however, only a fraction of the agents are subject to sensor uncertainties, then the proposed

corrective signal in (7.11) can be applied to only those agents subject to sensor uncertainty and not to all the

agents.

7.4 Adaptive Leader Following with Time-Varying Sensor Uncertainties

In this section, we generalize the results of the previous section by designing the local corrective

signal vi(t), i = 1, . . . ,N, t ≥ 0, in (7.10) to achieve approximate adaptive leader following in the presence

of time-varying sensor uncertainties δi(t), i = 1, . . . ,N, t ≥ 0. We assume that the time-varying sensor

uncertainties are bounded and have bounded time rates of change; that is, ‖δi(t)‖2 ≤ δ , t ≥ 0, and ‖δ̇i(t)‖2 ≤

δ̇ , t ≥ 0, for all i = 1, . . . ,N.

For the statement of our next result, it is necessary to introduce the projection operator [80]. Specif-

ically, let φ : Rn −→ R be a continuously differentiable convex function given by φ(θ) , (εθ+1)θ Tθ−θ 2
max

εθ θ 2
max

,

where θmax ∈ R is a projection norm bound imposed on θ ∈ Rn and εθ > 0 is a projection tolerance bound.

Then, the projection operator Proj : Rn×Rn→ Rn is defined by

Proj(θ ,y) ,





y, if φ(θ)< 0,

y, if φ(θ)≥ 0 and φ ′(θ)y≤ 0,

y− φ ′T(θ)φ ′(θ)y
φ ′(θ)φ ′T(θ) φ(θ), if φ(θ)≥ 0 and φ ′(θ)y > 0,

(7.31)
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where y ∈ Rn and φ ′(θ) , ∂φ(θ)
∂θ

. Note that it follows from the definition of the projection operator that

(θ ∗−θ)T
[

Proj(θ ,y)− y
]
≥ 0.

Next, for the controller given by (7.10), we use the local corrective signal

vi(t) = K0δ̂i(t)+ cK

[
liδ̂i(t)+∑

i∼ j

(
δ̂i(t)− δ̂ j(t)

)
]
, (7.32)

where

˙̂
δi(t) = γProj

(
δ̂i(t),−ATP

(
x̃i(t)− x̂i(t)− δ̂i(t)

))
, δ̂i(0) = δ̂i0, t ≥ 0, (7.33)

˙̂xi(t) = A0x̂i(t)− cBK

[
li
(
x̂i(t)− x0(t)

)
+∑

i∼ j

(
x̂i(t)− x̂ j(t)

)
]
+µIn

(
x̃i(t)− x̂i(t)− δ̂i(t)

)

−γProj
(

δ̂i(t),−ATP
(
x̃i(t)− x̂i(t)− δ̂i(t)

))
, x̂i(0) = x̂i0, t ≥ 0, (7.34)

and P ∈ Pn is the solution to the LMI given by

IN⊗ (AT
0 P+PA0−2µP)− cF(G)⊗ (KTBTP+PBK)< 0. (7.35)

(See Remark 7.3.4 for solving the LMI given by (7.35).)

For the statement of the next theorem, define

−R, IN⊗ (AT
0 P+PA0−2µP)− cF(G)⊗ (KTBTP+PBK)< 0, (7.36)

where R ∈ PNn, and note that, using similar steps as given in the previous section, the dynamics for e(t) =

x̃(t)− x̂(t)− δ̂ (t) and δ̃ (t) = δ (t)− δ̂ (t) are given by

ė(t) = (Ar−µInN)e(t)− (IN⊗A)δ̃ (t)+ δ̇ (t), e(0) = e0, t ≥ 0, (7.37)

˙̃
δ (t) = δ̇ (t)− γδ̂P(t), δ̂P(t),

[
δ̂

T
P1(t), . . . , δ̂

T
PN(t)

]T
, δ̃ (0) = δ̃0, t ≥ 0, (7.38)

where δ̂Pi(t), Proj
(

δ̂i(t),−ATPei(t)
)

, i = 1, . . . ,N, t ≥ 0.

Theorem 7.4.1 Consider the networked multiagent system consisting of N agents on a connected, undi-

rected graph G, where the dynamics of agent i ∈ {1, . . . ,N} is given by (7.4). In addition, assume that the
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local controller ui(t), i = 1, . . . ,N, t ≥ 0, for each agent is given by (7.10) with the corrective signal vi(t),

i = 1, . . . ,N, t ≥ 0, given by (7.32). Moreover, assume that the sensor uncertainties are time-varying and

det(A) 6= 0. Then, the closed-loop system dynamics given by (7.37) and (7.38) are uniformly bounded for

all
(
e0, δ̃0

)
∈ RnN×RnN with the ultimate bounds

‖e(t)‖2 ≤
[

λmax(P)
λmin(P)

η
2
1 +

1
γλmin(P)

η
2
2

] 1
2

, t ≥ T, (7.39)

‖δ̃ (t)‖2 ≤
[
γλmax(P)η2

1 +η
2
2

] 1
2
, t ≥ T, (7.40)

where η1 , 1√
d1

[
d2

2
√

d1
+
(

d2
2

4d1
+d3

) 1
2
]
, η2 , δ̂max +δ , d1 , λmin(R), d2 , 2Nλmax(P)δ̇ , and d3 , 2Nγ−1 ¯̇

δ

·(δ̂max + δ̄ ).

Proof. To show uniform boundedness of the system dynamics given by (7.37) and (7.38), consider

the Lyapunov-like function given by (7.21), where P satisfies (7.35). Note that V (0,0) = 0, V
(
e, δ̃
)
> 0 for

all
(
e, δ̃
)
6= (0,0), and V

(
e, δ̃
)

is radially unbounded. The time derivative of (7.21) along the closed-loop

system trajectories of (7.37) and (7.38) is given by

V̇
(
e(t), δ̃ (t)

)
=

N

∑
i=1

[
2eT

i (t)PA0ei(t)−2eT
i (t)PBK ∑

i∼ j

(
ei(t)− e j(t)

)
−2eT

i (t)PAδ̃i(t)

+2eT
i (t)Pδ̇i(t)−2eT

i (t)PBKliei(t)−2eT
i (t)Pµei(t)

+2γ
−1

δ̃
T
i (t)

(
δ̇i(t)− γProj

(
δ̂i(t),−ATPei(t)

))
]

= −eT(t)Re(t)+
N

∑
i=1

[
−2eT

i (t)PAδ̃i(t)+2eT
i (t)Pδ̇i(t)+2γ

−1
δ̃

T
i (t)δ̇i(t)

−2δ̃
T
i (t)Proj(δ̂i(t),−ATPei(t))

]
,

= −eT(t)Re(t)+
N

∑
i=1

[
2
(
δ̂i(t)−δi(t)

)T
(

Proj(δ̂i(t),−ATPei(t))−
(
−ATPei(t)

))

+2eT
i (t)Pδ̇i(t)+2γ

−1
δ̃

T
i (t)δ̇i(t)

]
,

≤ −eT(t)Re(t)+
N

∑
i=1

[
2eT

i (t)Pδ̇i(t)+2γ
−1

δ̃
T
i (t)δ̇i(t)

]
,

≤ −d1‖e(t)‖2
2 +d2‖e(t)‖2 +d3,

= −
[
√

d1‖e(t)‖2−
d2

2
√

d1

]2

+
d2

2
4d1

+d3, t ≥ 0, (7.41)

276



www.manaraa.com

and hence, V̇
(
e(t), δ̃ (t)

)
< 0 outside the compact set Ω,

{(
e, δ̃
)
: ‖e‖2 ≤ η1 and ‖δ̃‖2 ≤ η2

}
. This proves

the uniform boundedness of the solution
(
e(t), δ̃ (t)

)
of the system dynamics given by (7.37) and (7.38) for

all
(
e0, δ̃0

)
∈ RnN×RnN [136].

To show the ultimate bounds for e(t), t ≥ T , and δ̃ (t), t ≥ T , given by (7.39) and (7.40), respectively,

note that λmin(P)‖e(t)‖2
2 + γ−1‖δ̃ (t)‖2

2 ≤ λmax(P)η2
1 + γ−1η2

2 , t ≥ T, or, equivalently, λmin(P)‖e(t)‖2
2 ≤

λmax(P)η2
1 +γ−1η2

2 , t ≥ T, and γ−1‖δ̃ (t)‖2
2 ≤ λmax(P)η2

1 +γ−1η2
2 , t ≥ T, which proves (7.39) and (7.40). �

Remark 7.4.1 A similar remark to Remark 7.3.1 holds for Theorem 7.4.1. Namely, all signals used to

construct the local controller ui(t), i= 1, . . . ,N, t ≥ 0, for each agent given by (7.10) with the local corrective

signal vi(t), i = 1, . . . ,N, t ≥ 0, given by (7.32), (7.33), and (7.34) are bounded.

Note that the projection operator is used in order to guarantee a bounded estimate of the unknown

parameter, since otherwise one cannot conclude uniform ultimate boundedness from (7.41). The ultimate

bounds given by (7.39) and (7.40) characterize the controller design parameters that need to be chosen in

order to achieve small excursions of ‖e(t)‖2 and ‖δ̃ (t)‖2 for t ≥ T . This is particularly important to obtain

accurate estimates for x̂i(t), i = 1, . . . ,N, t ≥ T , and δ̂i(t), i = 1, . . . ,N, t ≥ T , as well as suppress the effect

of δ̃i(t), i = 1, . . . ,N, t ≥ T . To elucidate the effect of the controller design parameters on (7.39) and (7.40),
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Figure 7.2: Effect of µ and γ on the ultimate bounds given by (7.39) and (7.40) (arrow directions denote the
increase of γ from 0.1 to 100).
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let A = 1, B = 1, K = 1, A0 = 0, K0 = 1, N = 1, c = 1, δ̂max = 1, δ = 1, and δ̇ = 2. In this case, it follows

from (7.36) that P = 0.5(1+ µ)−1R, where we set R = 1. Figure 7.2 shows the effect of µ ∈ [0,5] and

γ ∈ [0.1,100] on the ultimate bounds given by (7.39) and (7.40). Specifically, as expected, increasing both

µ and γ yields smaller ultimate bounds for ‖e(t)‖2 and ‖δ̃ (t)‖2 for t ≥ T .

7.5 Illustrative Numerical Examples

In this section, we present two numerical examples to demonstrate the utility and efficacy of the

proposed distributed control architectures for networked multiagent systems to mitigate the effect of time-

invariant and time-varying sensor uncertainties.

7.5.1 Example 1: Time-Invariant Sensor Uncertainties Case

To illustrate the key ideas presented in Section 7.2.2, consider a group of N = 4 agents subject to a

connected, undirected graphG given in Figure 7.1, where the dynamics of agent i satisfy




ẋ1
i (t)

ẋ2
i (t)

ẋ3
i (t)


 =




0 1 0

0 0 1

−4 −4 −1







x1
i (t)

x2
i (t)

x3
i (t)


+




0

0

1


u(t), i = 1, . . . ,4, t ≥ 0, (7.42)

with initial conditions x1(0) = [0,0,0]T, x2(0) = [1,2,−1]T, x3(0) = [3,1,0]T, and x4(0) = [2,2,2]T. Note

that det(A) 6= 0, where A is the system matrix of (7.42). For this example, we are interested in the problem

of asymptotically driving the state vector of each agent xi(t), i = 1, . . . ,4, t ≥ 0, to the state vector of a leader

x0(t), t ≥ 0, having dynamics given by v




ẋ1
0(t)

ẋ2
0(t)

ẋ3
0(t)


 =




0 1 0

0 0 1

−4 −4 −1







x1
0(t)

x2
0(t)

x3
0(t)


 , x0(0) =




1

1

3


 , t ≥ 0. (7.43)

For this problem, A0 = A−BK0 holds with K0 = [0,0,0] as a direct consequence of (7.42) and (7.43).

To design the proposed local controllers, let K = Q−1BTP and set Q = 0.1I3, µ = 0.2, and c = 6≥
1

min{ηi} , i = 1, . . . ,4, so that the LMI given by (7.30) for P = S−1 (see Remark 7.3.4) is satisfied with
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P =




0.0850 0.0316 0.0224

0.0316 0.0467 0.0090

0.0224 0.0090 0.0187


 , (7.44)

and hence, K =
[
0.22, 0.09, 0.19

]
. Note that with this selection for K, Aξ is Hurwitz for all ηi ∈ spec(F(G)),

i = 1, . . . ,4. The nominal system performance for the case when the uncompromised state measurement is

available to the local controller of agent i, i ∈ {1, . . . ,4}, (i.e., δi(·) = 0), is shown in Figure 7.3 using (7.7).

Next, consider a time-invariant sensor uncertainty given by (7.5) with

δ1 =




5

−7

−3


 , δ2 =




4

−5

4


 , δ3 =




6

3

−5


 , δ4 =




−4

1

2


 . (7.45)

The system performance for the case when the compromised state measurement is available to the local

controller of agent i ∈ {1, . . . ,4} (i.e., δi(·) 6= 0), is shown in Figure 7.4 using (7.7) (i.e., vi(t) ≡ 0, i =

1, . . . ,4). Now, to illustrate the results of Theorem 7.3.1, we use the proposed local controller ui(t), i =

1, . . . ,4, t ≥ 0, for each agent given by (7.10) and the local corrective signal vi(t), i = 1, . . . ,4, t ≥ 0, given
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Figure 7.3: Nominal system performance for a group of agents in Example 1 with the local controller given
by (7.7) (i.e., vi(t)≡ 0, i = 1, . . . ,4) when the uncompromised state measurement is available for feedback.
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Figure 7.4: System performance for a group of agents in Example 1 with the local controller given by (7.7)
(i.e., vi(t)≡ 0, i = 1, . . . ,4) when the compromised state measurement is available for feedback.

by (7.11) with γ = 100. For this case, the system performance in the presence of time-invariant sensor

uncertainties is shown in Figure 7.5. As expected, the proposed distributed control architecture of Theorem

7.3.1 allows the state vector of each agent xi(t), i = 1, . . . ,4, t ≥ 0, to asymptotically track the state vector of

the leader x0(t), t ≥ 0. Finally, the time evolution of the error signals given by e(t), t ≥ 0, and δ̃ (t), t ≥ 0, are

shown respectively in Figures 7.6 and 7.7 for the closed-loop system with the proposed distributed control

architecture. The values of the design gains γ and µ are chosen to obtain acceptable system performance

without excessive control oscillations.

7.5.2 Example 2: Time-Varying Sensor Uncertainties Case

To illustrate the key ideas presented in Section 7.2.2, consider the same group of agents as in

Example 1 given in Figure 7.1, where the dynamics of agent i satisfy


ẋ1

i (t)

ẋ2
i (t)


 =


 0 1.5

−2 0




x1

i (t)

x2
i (t)


+


0

1


u(t), i = 1, . . . ,4, t ≥ 0, (7.46)

with initial conditions x1(0) = [0,0]T, x2(0) = [1,2]T, x3(0) = [3,1]T, and x4(0) = [2,2]T. Note that det(A) 6=

0, where A is the system matrix of (7.46). For this example, we are interested in the problem of approxi-
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Figure 7.5: System performance for a group of agents in Example 1 with the proposed local controller
given by (7.10) and the local corrective signal given by (7.11) when the compromised state measurement is
available for feedback.
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Figure 7.6: Time evolution of e(t), t ≥ 0, in Example 1 with the proposed local controller given by (7.10)
and the local corrective signal given by (7.11) when the compromised state measurement is available for
feedback.
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Figure 7.7: Time evolution of δ̃ (t), t ≥ 0, in Example 1 with the proposed local controller given by (7.10)
and the local corrective signal given by (7.11) when the compromised state measurement is available for
feedback.

mately driving the state vector of each agent xi(t), i = 1, . . . ,4, t ≥ 0, to the state vector of a leader x0(t),

t ≥ 0, having dynamics given by


ẋ1

0(t)

ẋ2
0(t)


 =


 0 1.5

−2 0




x1

0(t)

x2
0(t)


 , x0(0) =


1

1


 , t ≥ 0. (7.47)

For this problem, A0 = A−BK0 holds with K0 = [0,0] as a direct consequence of (7.46) and (7.47).

To design the proposed local controllers, let K = Q−1BTP and set Q = 0.1I2, µ = 1, and c = 6 ≥
1

min{ηi} , i = 1, . . . ,4, so that the LMI given by (7.30) for P = S−1 (see Remark 7.3.4) is satisfied with

P =


0.0398 0.0037

0.0037 0.0360


 , (7.48)

and hence, K =
[
0.04, 0.36

]
. Note that with this selection for K, Aξ is Hurwitz for all ηi ∈ spec(F(G)),

i = 1, . . . ,4. The nominal system performance for the case when the uncompromised state measurement is

available to the local controller of agent i, i ∈ {1, . . . ,4}, (i.e., δi(·) = 0), is shown in Figures 7.8 and 7.9

using (7.7).
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Next, consider the time-varying sensor uncertainty given by (7.5) with

δ1(t) = 2+ sin(0.6t)


0.1

0.2


 , δ2(t) =−1+ sin(0.85t)


0.2

0.4


 , (7.49)

δ3(t) =−4+ sin(0.25t)


0.3

0.6


 , δ4(t) = 1+ sin(0.25t)


0.4

0.8


 . (7.50)
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Figure 7.8: Nominal system performance for a group of agents in Example 2 with the local controller given
by (7.7) (i.e., vi(t)≡ 0, i = 1, . . . ,4) when the uncompromised state measurement is available for feedback.
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The system performance for the case when the compromised state measurement is available to the local

controller of agent i∈ {1, . . . ,4} (i.e., δi(t) 6= 0), is shown in Figures 7.10 and 7.11 using (7.7) (i.e., vi(t)≡ 0,

i = 1, . . . ,4). Now, to illustrate the results of Theorem 7.4.1, we use the proposed local controller ui(t),

i = 1, . . . ,4, t ≥ 0, for each agent given by (7.10) and the local corrective signal vi(t), i = 1, . . . ,4, t ≥ 0,

given by (7.32) with γ = 100, and δ̂max = 100. For this case, the system performance in the presence of

time-varying sensor uncertainties is shown in Figures 7.12 and 7.13. As expected, the proposed distributed

control architecture of Theorem 7.4.1 allows the state vector of each agent xi(t), i = 1, . . . ,4, t ≥ 0, to

approximately track the state vector of the leader x0(t), t ≥ 0. Finally, the time evolution of the error signals

given by (7.37) and (7.38) are, respectively, shown in Figures 7.14 and 7.15. As for the previous example,

the values of the design gains γ and µ are chosen to obtain acceptable system performance with minimal

control oscillations. In particular, after choosing γ = 100 to achieve an acceptable small ultimate bound on

‖e(t)‖2, we chose µ = 1 to achieve an acceptable small ultimate bound on ‖δ̃ (t)‖2.

7.6 Conclusion

Sensor uncertainties in networked multiagent systems, which may result from low sensor quality,

sensor failure, sensor bias, or detrimental environmental conditions, can significantly deteriorate achievable
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Figure 7.10: System performance for a group of agents in Example 2 with the local controller given by (7.7)
(i.e., vi(t)≡ 0, i = 1, . . . ,4) when the compromised state measurement is available for feedback.

284



www.manaraa.com

closed-loop system performance. In this paper, we presented two distributed adaptive control architectures

to mitigate the effect of time-invariant and time-varying sensor uncertainties in networked multiagent sys-

tems with agents having high-order, linear dynamics. Specifically, we modeled agent uncertainty between
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Figure 7.11: System trajectories of each agent in Figure 7.10.
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Figure 7.12: System performance for a group of agents in Example 2 with the proposed local controller
given by (7.10) and the local corrective signal given by (7.32) when the compromised state measurement is
available for feedback.
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networked agents using unknown exogenous disturbances and showed that the proposed adaptive control

architectures guarantee asymptotic stability of the closed-loop dynamical system when the exogenous dis-

turbances are time-invariant and uniform ultimate boundedness when the exogenous disturbances are time-
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Figure 7.13: System trajectories of each agent in Figure 7.11.
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Figure 7.14: Time evolution of (7.37) in Example 2 with the proposed local controller given by (7.10)
and the local corrective signal given by (7.32) when the compromised state measurement is available for
feedback.
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Figure 7.15: Time evolution of (7.38) in Example 2 with the proposed local controller given by (7.10)
and the local corrective signal given by (7.32) when the compromised state measurement is available for
feedback.

varying. Future extensions will focus on output feedback distributed adaptive control strategies that can

suppress the effect of simultaneous sensor and actuator uncertainties. Generalizations to agents having

nonlinear and uncertain dynamics, as well as time-varying communication graph topologies will also be

developed.

287



www.manaraa.com

CHAPTER 8: CONTROL OF UNCERTAIN MULTIAGENT SYSTEMS WITH

SPATIOTEMPORAL CONSTRAINTS1

This paper focuses on control of uncertain multiagent systems with spatial and temporal constraints.

Specifically, we propose a new distributed control algorithm to simultaneously guarantee i) a user-defined

performance by limiting the distance between the state trajectories of agents and their reference state trajec-

tories to be less than given bounds (spatial constraints) and ii) a finite-time convergence to the position of a

time-varying leader at a user-defined time (temporal constraint). The key feature of the proposed distributed

control architecture is to address these spatiotemporal constraints regardless of the initial conditions of

agents and without requiring a strict knowledge of the upper bounds of the considered class of system

uncertainties. In particular, based on a distributed adaptive control law, which utilizes an error-dependent

learning rate derived from a (generalized) restricted potential function, the proposed algorithm is capable of

enforcing user-defined performance bounds on the distance between the state trajectories of agents and their

distributed reference models. In addition, a user-defined finite-time convergence is achieved using a time

transformation approach that links a prescribed time interval and a stretched infinite-time interval, where we

perform the stability analysis on the latter interval. The efficacy of the proposed control architecture is also

demonstrated through a numerical example.

8.1 Introduction

Multiagent systems consist of a group of networked agents that exchange local information within

each other in order to address given global objectives. In many practical applications, these systems are

subject to spatial and temporal constraints. However, it is not a trivial task to satisfy these constraints

especially when agents operate under system uncertainties.

1This chapter has been submitted to the American Control Conference.
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8.1.1 Spatial Constraints

Spatial constraints often arise from the structural and operational limitations in critical control

systems applications. Specifically, severely or unpredictably deviating from an ideal agent response, which

is characterized to obey certain spatial limits on the states of agents, is not desired and needs to be avoided in

practice. Therefore, a feedback control algorithm must have the ability to keep the trajectories of each agent

close enough to the trajectories of a reference model, which denotes ideal responses for agents forming the

multiagent system.

To this end, model reference adaptive control architectures can be effective system-theoretical

methods in dealing with system uncertainties. However, their derived worst-case performance bounds based

on Lyapunov or Lyapunov-like functions are usually (overly) conservative and not user-defined due to their

dependence on system uncertainties [1]. Hence, these bounds are not always practical in establishing precise

performance bounds on the system errors denoting the distance between uncertain system dynamics and

given reference models. The authors of, for example, [1, 2, 18–20, 181] (also see references therein as

well as introduction section of [1] for additional details) develop adaptive control algorithms that provide

remedies to this problem for achieving performance guarantees defined by user-defined bounds. Yet, these

results do not consider any temporal constraints in the control system development.

8.1.2 Temporal Constraints

Temporal constraints are generally related with time-critical applications (e.g., engagement of a

vehicle with another one), where it is necessary to perform and complete a given task over a desired time

interval. As it is well-known, however, the convergence time achieved through classical finite-time control

architectures depends on the initial conditions of considered physical systems [10, 11, 53–60]. To address

this drawback in time-critical applications, control algorithms with fixed-time convergence properties are

proposed (see, for example, [12, 13, 61–65]) and control algorithms with predefined-time convergence

properties are developed (see, for example, [14, 15]).

Yet, in these notable approaches, either the calculated upper bound on the convergence time do not

necessarily hold globally for all initial conditions and they can be conservative [12] or they can require

a strict knowledge of the upper bounds of the considered class of system uncertainties in their design

(also see introduction sections of [4, 171] for additional details). Recently, the authors of [4, 72, 73, 171]
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develop distributed control algorithms based on the time transformation approach in order to guarantee the

completion of a given control task at T seconds, where T denotes a user-defined finite time convergence

parameter that does not depend on the initial conditions of agents or knowledge of the upper bounds of

system uncertainties. However, these results do not take spatial constraints into account; hence, system

uncertainties can significantly deviate agents from their ideal responses during transient time (see Section

8.5 of this paper for an example illustrating this transient performance problem).

8.1.3 Contribution

In this paper, we focus on control of uncertain multiagent systems with spatiotemporal constraints.

Specifically, we propose a new distributed control algorithm to simultaneously guarantee i) a user-defined

performance by limiting a distance between the state trajectories of agents and their reference state trajec-

tories to be less than given bounds (spatial constraints) and ii) a finite-time convergence to the position of a

time-varying leader at a user-defined time (temporal constraint). The key feature of the proposed distributed

control architecture is to address these spatiotemporal constraints regardless of the initial conditions of

agents and without requiring a strict knowledge of the upper bounds of the considered class of system

uncertainties.

In particular, with a distributed adaptive control law, which utilizes a set-theoretic error-dependent

learning rate derived from a (generalized) restricted potential function based on the results documented in

[1, 2, 181], the proposed algorithm is capable of enforcing user-defined performance bounds on the distance

between the state trajectories of agents and their distributed reference models. In addition, a user-defined

finite-time convergence is achieved using the time transformation approach [4, 72, 73, 171] that links a

prescribed time interval t ∈ [0,T ) and a stretched infinite-time interval s ∈ [0,∞), where we perform the

stability analysis on the latter interval. The efficacy of the proposed control architecture is also demonstrated

through a numerical example.

8.2 Mathematical Preliminaries

We begin with the notation used in this paper. Specifically, R, Rn, and Rn×m respectively denote the

set of real numbers, the set of n× 1 real column vectors, and the set of n×m real matrices; R+ and Rn×n
+

(resp., Rn×n
+ ) denote the set of positive real numbers and the set of n×n positive-definite (resp., nonnegative-

definite) real matrices; Z+ (resp., Z+) denotes the set of positive (resp., nonnegative) integers; 0n and 1n
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respectively denote the n×1 zero vector and the n×1 ones vector; and “,” denotes equality by definition.

In addition, we use (·)T to denote the transpose operator, (·)−1 to denote the inverse operator, det(·) to denote

the determinant operator, ‖ · ‖2 to denote the Euclidean norm, and ‖ · ‖H to denote the weighted Euclidean

norm (i.e., ‖x‖A =
√

xTAx for x∈Rn and A∈Rn×n
+ ). We also write λmin(A) (resp., λmax(A)) for the minimum

(resp., maximum) eigenvalue of the square matrix A, λi(A) for the ith eigenvalue of the square matrix A, and

[A]i j for the (i, j)th entry of the matrix A.

Next, we overview several basic notions from graph theory (see [176, 177] for further reading).

In particular, an undirected graph G is defined by a set VG = {1, . . . ,N} of nodes and a set EG ⊂ VG×VG
of edges. When (i, j) ∈ EG, we say that nodes i and j are neighbors and i ∼ j indicates the neighboring

relation. The degree of a node is given by the number of its neighbors; that is, if we let di to stand for the

degree of node i, then the degree matrix of a graph G, D(G) ∈ RN×N , is given by D(G) , diag [d] where

d = [d1, . . . ,dN ]
T. A path i0i1 · · · iL of a graphG is a finite sequence of nodes such that ik−1 ∼ ik, k = 1, . . . ,L.

Specifically, when every pair of distinct nodes has a path, then we say that the graph G is connected. We

writeA(G)∈RN×N for the adjacency matrix of a graphG, which is defined by [A(G)]i j , 1 when (i, j)∈ EG
and [A(G)]i j , 0 otherwise. We also write B(G) ∈ RN×M for the (node-edge) incidence matrix of a graph

G, which is defined by [B(G)]i j , 1 when node i is the head of edge j, [B(G)]i j , −1 when node i is the

tail of edge j, and [B(G)]i j , 0 otherwise. Above, M is the number of edges, i is an index for the node

set, and j is an index for the edge set. Finally, the graph Laplacian matrix, L(G) ∈ RN×N
+ , is defined by

L(G),D(G)−A(G) or, equivalently, L(G) = B(G)B(G)T. In what follows, a given multiagent system

is modeled as a connected, undirected graph G with nodes and edges respectively representing agents and

interagent communication links.

The following results and definitions are needed for the theoretical content of this paper.

Remark 8.2.1 As in [4, 72, 73], we use a key notion from Section 1.1.1.4 of [179]. Let ξ (t) denote the

solution to the dynamical system given by

ẋ(t) = f (t,x(t)), x(0) = x0. (8.1)

where f : R+×Rn→ Rn. Furthermore, let t = θ(s) denote a time transformation with θ(s) being a strictly

increasing and continuously differentiable function. In addition, define ψ(s) = ξ (t). Then, we have
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ψ
′(s) = θ

′(s) f (θ(s),ψ(s)), ψ(θ−1(0)) = x0, (8.2)

with ψ ′(s), dψ(s)/ds and θ ′(s), dθ(s)/ds.

Remark 8.2.2 Let η(t) be a given signal. Following the time transformation concept discussed in Remark

8.2.1, we write ηs(s) to denote the corresponding transformed signal in the sense that ηs(s), η(θ(s)).

Lemma 8.2.1 ([Lemma 3.3, 178]) Let K = diag(k), k= [k1,k2, . . . , kN ]
T, ki ∈Z+, i= 1, . . . ,N. In addition,

consider that at least one entry of k is nonzero. Then, F(G),L(G)+K ∈RN×N
+ for a connected, undirected

graphG.

Lemma 8.2.2 Consider a dynamical system given by

ψ
′(s) = Arψ(s)+η(s), ψ(0) = ψ0, (8.3)

with Ar ∈Rn×n being a Hurwitz system matrix and ψ(s)∈Rn being the system state. For any bounded input

η(s), ψ(s) is then bounded. If, in addition lims→∞ η(s) = 0, then lims→∞ ψ(s) = 0.

Proof. The result follows from Chapter 4.9 and Exercise 4.58 in [136]. �

Definition 8.2.1 Let a convex hypercube in Rn be defined as Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}

,

where (θ min
i , θ max

i ) denote the minimum and maximum bounds for the ith component of the n-dimensional

parameter vector θ . Furthermore, for a sufficiently small positive constant ν , let the second hypercube be

Ων =
{

θ ∈ Rn : (θ min
i +ν ≤ θi ≤ θ max

i −ν)i=1,2,··· ,n
}

, where Ων ⊂Ω. With y ∈Rn, the projection operator

Proj : Rn×Rn→Rn is then defined (componentwise) as Proj(θ ,y),
(
[θ max

i −θi]/ν
)
yi when θi > θ max

i −ν

and yi > 0, Proj(θ ,y),
(
[θi−θ min

i ]/ν
)
yi when θi < θ min

i +ν and yi < 0, and Proj(θ ,y), yi otherwise. It

then follows that
(
θ −θ ∗

)T(Proj(θ ,y)− y
)
≤ 0 [30, 80].

Definition 8.2.2 For z ∈ Rp and H ∈ Rp×p
+ , we define φ(‖z‖H), φ : R→ R, to be a generalized restricted

potential function (generalized barrier Lyapunov function) on the set given by

Dε , {z : ‖z‖H ∈ [0,ε)}, (8.4)

where ε ∈ R+ is a user-defined constant, when the following statements hold [1]:
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i) If ‖z‖H = 0, then φ(‖z‖H) = 0.

ii) If z ∈ Dε and ‖z‖H 6= 0, then φ(‖z‖H)> 0.

iii) If ‖z‖H→ ε , then φ(‖z‖H)→ ∞.

iv) φ(‖z‖H) is continuously differentiable on Dε .

v) If z ∈ Dε , then φd(‖z‖H)> 0, where φd(‖z‖H),
dφ(‖z‖H)

d‖z‖2
H

.

vi) If z ∈ Dε , then 2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0.

8.3 Problem Formulation

In this paper, we focus on a leader-follower problem in a multiagent system, where this system has

N agents that exchange information over a connected, undirected graphG. Specifically, we consider that a

subset of these agents has access to the position of a time-varying leader given by

p(t) =
∫ t

0
v(τ)dτ + p(0), p(t) ∈ R, (8.5)

where v(t) ∈ R is the bounded (with unknown bound) and piecewise continuous velocity of the leader. In

addition, we consider that the dynamics of each agent satisfies

ẋi(t) = ui(t)+ωixi(t), xi(0) = xi0, i ∈ {1,2, . . . ,N}, (8.6)

where xi(t)∈R, i∈ {1,2, . . . ,N} and ui(t)∈R, i∈ {1,2, . . . ,N} are respectively the position and the control

signal of an agent and ωi ∈ R, i ∈ {1,2, . . . ,N} represents an agentwise system uncertainty. In a compact

form, (8.6) can be equivalently written as

ẋ(t) = u(t)+Ωx(t), x(0) = x0, (8.7)

where x(t) , [x1(t), . . . ,xN(t)]T ∈ RN represents the aggregated state vector and Ω , diag([ω1, . . . ,ωN ]) ∈

RN×N .

In order to theoretically discuss the performance guarantees on the above multiagent system in

the presence of system uncertainties, we introduce the reference model capturing an ideal leader-follower
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Leader

Figure 8.1: Illustration of the considered leader-follower problem over a prescribed time interval t ∈ [0,T ),
where uncertain agents exchange information over a connected, undirected graphG.

behavior given by

ṙi(t) = −αλ (t)
(

∑
i∼ j

(
ri(t)− r j(t)

)
+ ki

(
ri(t)− p(t)

))
, ri(0) = ri0, i ∈ {1,2, . . . ,N}, (8.8)

with ri(t)∈R, i∈ {1,2, . . . ,N} being the ideal reference model state. From [4] with λ (t) = 1/(T−t), which

is also utilized here, it now follows that the reference model given by (8.8) generates a bounded trajectory

that converges to the time-varying leader given by (8.5) at the user-defined finite time T ; that is,

lim
t→T

(
ri(t)− p(t)

)
= 0, i ∈ {1,2, . . . ,N}. (8.9)

In (8.8), each state of the reference model needs to communicate with its neighbor on the graphG. In order

to remove this dependence and motivated by the results in [198], we introduce the reference model given by

ẋri(t) = −αλ (t)
(

∑
i∼ j

(
xri(t)− x j(t)

)
+ ki

(
xri(t)− p(t)

))
, xri(0) = xri0, i ∈ {1,2, . . . ,N}, (8.10)

where xri(t) ∈ R, i ∈ {1,2, . . . ,N} denotes the reference model state. We refer to Remark 8.4.2 for a

discussion on how the proposed distributed control algorithm considered in this paper can drive the reference

model arbitrarily close the ideal one. Furthermore, as a byproduct, the reference model given in (8.10) also

avoids a possible centralized control design (see Section 8.4).

The objective of this paper is to present a distributed control algorithm to drive the position of each

agent to that of the leader in a user-defined finite time T ∈ R+ (see Figure 8.1), while guaranteeing user-

defined performance bounds εi, i ∈ {1,2, . . . ,N}, on the system error trajectories (i.e., the error between the
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agent’s position xi(t) and an ideal system trajectory xri(t)); that is,

lim
t→T

(
xi(t)− p(t)

)
= 0, i ∈ {1,2, . . . ,N}, (8.11)

|xi(t)− xri(t)|< εi, i ∈ {1,2, . . . ,N}. (8.12)

8.4 Proposed Control Architecture

This section presents the proposed distributed control algorithm for simultaneously achieving user-

defined performance guarantees as well as user-defined finite-time convergence to the position of the time-

varying leader. Mathematically speaking, consider the distributed control algorithm given by

ui(t) = −αλ (t)
(

∑
i∼ j

(
xi(t)− x j(t)

)
+ ki

(
xi(t)− p(t)

))
− ω̂i(t)xi(t), i ∈ {1,2, . . . ,N}, (8.13)

where ω̂i(t) is an estimation of the system uncertainty ωi, i ∈ {1,2, . . . ,N}. In (8.13), ki = 1 for the subset

of the agents having access to the position of a time-varying leader in (8.5) and ki = 0 for other agents.

Furthermore, the update law for ω̂i(t), i ∈ {1,2, . . . ,N} in (8.13) is given by

˙̂ωi(t) = γiProj
(
ω̂i(t),φdi(|ei(t)|)xi(t)ei(t)

)
, ω̂i(0) = ω̂i0, i ∈ {1,2, . . . ,N}, (8.14)

where ei(t) , xi(t)− xri(t), i ∈ {1,2, . . . ,N}, is the error between the position of an agent and its cor-

responding reference model state from (8.10) and ω̂max is the projection bound. Note that the proposed

control algorithm given by (8.13) along with (8.14) can be executed distributively when a user-defined finite

time T is selected for λ (t) and when α is fixed according to Theorem 8.4.1 below. Here, (8.13) can be

expressed in the compact form as

u(t) = −αλ (t)F(G)x̃(t)− Ω̂(t)x(t). (8.15)

where x̃(t), x(t)−1N p(t)∈RN denotes the aggregated error vector between the position of each agent and

that of the leader with the dynamics

˙̃x(t) = ẋ(t)−1Nv(t),

= u(t)+Ωx(t)−1Nv(t), x̃(0) = x̃0, (8.16)

and Ω̂(t), diag([ω̂1, . . . , ω̂N ]) ∈ RN×N .
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We now rewrite the reference model given by (8.10) as

ẋri(t) = −αλ (t)
(

∑
i∼ j

(
xri(t)− xr j(t)+ xr j(t)− x j(t)

)
+ ki

(
xri(t)− p(t)

))
,

= −αλ (t)
(

∑
i∼ j

(
xri(t)− xr j(t)

)
+ ki

(
xri(t)− p(t)

))
+αλ (t)∑

i∼ j
e j(t), xri(0) = xri0, i ∈ {1,2, . . . ,N},

(8.17)

and define x̃ri(t) , xri(t)− p(t), i ∈ {1,2, . . . ,N}, to capture the error between the reference trajectory and

the position of the time-varying leader. To this end, the error dynamics for x̃ri(t) can now be written as

˙̃xri(t) = −αλ (t)
(

∑
i∼ j

(
x̃ri(t)− x̃r j(t)

)
+ kix̃ri(t)

)
− v(t)+αλ (t)∑

i∼ j
e j(t), xri(0) = xri0, i ∈ {1,2, . . . ,N},

(8.18)

In the compact form, (8.18) can be equivalently written as

˙̃xr(t) = −αλ (t)F(G)x̃r(t)+αλ (t)A(G)e(t)− v(t)1N , xr(0) = xr0, (8.19)

where x̃r(t) , [x̃r1(t), . . . , x̃rN(t)]T ∈ RN and e(t) , [e1(t), . . . ,eN(t)]T ∈ RN denote the aggregated error

vectors. Consider now the time transformation function given by

t = θ(s), T (1− e−s). (8.20)

This time transformation links a prescribed finite-time interval of interest t ∈ [0,T ) to the stretched infinite-

time interval s ∈ [0,∞) and vice versa. Based on this time transformation function, let ξ (t) ∈RN , t ∈ [0,T ),

be a solution to the dynamical system given by (8.19) and define x̃rs(s) = x̃r(t),s ∈ [0,∞). It follows from

Remark 8.2.1 that

x̃′rs(s) = −αF(G)x̃rs(s)+Ms(s) xrs(0) = xrs0, (8.21)

where Ms(s), αA(G)es(s)−Te−svs(s)1N ∈ RN .
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Using (8.6), (8.10), and (8.13), we next write the error dynamics for ei(t) as

ėi(t) = ẋi(t)− ẋri(t),

= −αλ (t)
(

∑
i∼ j

(
xi(t)− xri(t)

)
+ kiei(t)

)
− ω̃i(t)xi(t),

= −αλ (t)
(
di + ki

)
ei(t)− ω̃i(t)xi(t), ei(0) = ei0, i ∈ {1,2, . . . ,N}, (8.22)

where ω̃i(t) , ω̂i(t)−ωi, i ∈ {1,2, . . . ,N} and ei0 , xi0− xri0, i ∈ {1,2, . . . ,N}. Similar to how (8.21) is

derived from (8.19) using the time transformation function given by (8.20) according to Remark 8.2.1, one

can also rewrite (8.22) as

e′is(s) =−α
(
di + ki

)
eis(s)−Te−s

ω̃is(s)xis(s), eis(0) = ei0, i ∈ {1,2, . . . ,N}, (8.23)

where the subscript s is used; see Remark 8.2.2. Using (8.14), the weight estimation error dynamics can be

also expressed in the infinite-time interval as

ω̃
′
is(s) = γiTe−sProj

(
ω̂is(s),φdi(|ei(s)|)xis(s)eis(s)

)
, ω̃is(0) = ω̂i0−ωi, i ∈ {1,2, . . . ,N}. (8.24)

The following theorem presents the main contribution of this paper that addresses our objective stated in the

last paragraph of Section 8.3.

Theorem 8.4.1 Consider the multiagent system consisting of N agents on a connected, undirected graph

G, where the uncertain dynamics of an agent i ∈ {1, . . . ,N} is given by (8.6). Consider, in addition, that

there exists at least one agent sensing the position of the time-varying leader given by (8.5), which has

bounded (but unknown) velocity. For the distributed control algorithm ui(t) given by (8.13) along with its

update law given by (8.14), let the design parameter α be chosen such that S , αF(G)− IN is positive-

definite. If |ei(0)| < εi, i ∈ {1,2, . . . ,N}, then the closed-loop system signals (including all the distributed

control signals) remain bounded and all agents converge to the position of the leader at the user-defined

finite time T (i.e., limt→T x̃i(t) = 0, i ∈ {1,2, . . . ,N}) for all initial conditions of agents, while guaranteeing

user-defined performance bounds |ei(t)|< εi, i ∈ {1,2, . . . ,N}.

Proof. Considering the error dynamics in (8.23) and (8.24), let Vi : Dε ×R→ R+ be an energy

function given by
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Vi(eis, ω̃is) = φi(|eis|)+ γ
−1
i ω̃

2
is, i ∈ {1,2, . . . ,N}, (8.25)

where Dε , {|eis(s)| : |eis(s)| < εi}, i ∈ {1,2, . . . ,N}. The derivative of (8.25) with respect to s along the

closed-loop system trajectories of (8.23) and (8.24) is given by

V ′i
(
eis(s), ω̃is(s)

)
=

dφ(|eis(s)|)
ds

+2γ
−1
i ω̃is(s)ω̃ ′is(s)

= 2φdi(|eis(s)|)eis(s)e′is(s)+2ω̃is(s)
(

Te−sProj
(
ω̂is(s),φdi(|eis(s)|)xis(s)eis(s)

)
. (8.26)

Using (8.23) in (8.26) now yields

V ′i
(
eis(s), ω̃is(s)

)
= −2αφdi(|eis(s)|)(di + ki)e2

is(s)−2Te−s(
ω̂is(s)−ωi

)(
φdi(|eis(s)|)xis(s)eis(s)

−Proj
(

ω̂is(s),φdi(|eis(s)|)xis(s)eis(s)
))

. (8.27)

Now, using the property of projection operator from Definition 8.2.1, one can write

V ′i
(
eis(s), ω̃is(s)

)
≤ −βiφdi(|eis(s)|)e2

is(s),

≤ −βiφdi(|eis(s)|)e2
is(s)

+
[1

2
βiφ(|eis(s)|)−

1
2

βiφ(|eis(s)|)
]
+
[1

2
βiγ
−1
i ω̃

2
is(s)−

1
2

βiγ
−1
i ω̃

2
is(s)

]
,

≤ −1
2

βiVi
(
eis(s), ω̃is(s)

)
+µ, (8.28)

with βi, 2α(di+ki)∈R+, µ , 1
2 βiγ

−1
i (ω̂2

max+ω2
max), and ωmax,max{ω1, . . . ,ωN}, where we also utilized

the last property of Definition 8.2.2 for the generalized restricted potential function. It now follows from

(8.28) that Vi
(
eis(s), ω̃is(s)

)
is upper bounded by Vi,max , max

{
Vi0,

2µ

βi

}
, where Vi0 , Vi(eis(0), ω̃is(0)).

From (8.25), the boundedness of the energy function results in φi(|eis(s)|)+ γ
−1
i ω̃2

is(s)≤ Vi,max, and hence,

φ(|eis(s)|)≤Vi,max that proves |eis(s)|< εi, s∈ [0,∞). From Remark 8.2.1, one can now conclude that |ei(t)|

stays in the set Dε within the finite-time interval of interest for all agents; that is, |ei(t)|< εi, t ∈ [0,T ), i ∈

{1,2, . . . ,N}.

Since es(s) is bounded based on the above arguments, Ms(s) in (8.21) also remains bounded.

Considering (8.21), it now follows from Lemma 8.2.2 that x̃rs(s) is bounded. This implies the boundedness

of the reference system trajectories xrs(s) (or equivalently, xr(t)) and consequently the position of the agents
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xs(s) (and x(t)). Hence, from V ′i
(
eis(s), ω̃is(s)

)
≤−βiφdi(|eis(s)|)e2

is(s) given as the first inequality in (8.28),

it follows from and the steps in the proof of Theorem 5.3 of [21] (based on [199, 200]) that lims→∞ es(s) = 0.

Since es(s) = e(t) by definition (see Remark 8.2.1) and t→ T as s→ ∞, one obtains

lim
t→T

e(t) = 0. (8.29)

Turning back to (8.21), now that lims→∞ es(s) = 0, one can conclude lims→∞ Ms(s) = 0. Once again, using

Lemma 8.2.2, it follows that lims→∞ x̃rs(s) = 0, that is,

lim
t→T

x̃r(t) = 0. (8.30)

Using the sum law for the well-defined limits in (8.29) and (8.30) now results in limt→T
(
x(t)−1N p(t)

)
= 0

(see Section 1.6 of [201]).

Finally, we show that the control signal u(t), t ∈ [0,T ), remains bounded. For this purpose, letting

z(t),−αλ (t)F(G)x̃(t), we rewrite (8.15) as

u(t) = z(t)− Ω̂(t)x(t). (8.31)

Since Ω̂(t) and x(t) are both bounded from the above part of the proof, we need to ensure that z(t) remains

bounded to conclude the boundedness of u(t). Motivated from this standpoint, we take the time derivative

of z(t) as

ż(t) =−αλ (t)F(G) ˙̃x(t)−αλ
2(t)F(G)x̃(t), z(0) = z0. (8.32)

Substituting (8.16) in (8.32) then yields

ż(t) = −αλ (t)F(G)
(
u(t)+Ωx(t)−1Nv(t)

)
+ z(t)λ (t)

= −αλ (t)F(G)
(
z(t)− Ω̃(t)x(t)−1Nv(t)

)
+ z(t)λ (t),

= −Sλ (t)z(t)+αλ (t)F(G)
(
Ω̃(t)x(t)+1Nv(t)

)
, z(0) = z0, (8.33)

where S = αF(G)− IN . Similar to how (8.21) is derived from (8.19) using the time transformation function

given by (8.20) according to Remark 8.2.1, one can also rewrite (8.33) as
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z′s(s) = −Szs(s)+αF(G)Ns(s), zs(0) = z0, (8.34)

where Ns(s), Ω̃s(s)xs(s)+1Nvs(s) ∈RN . From the boundedness of the velocity of the leader as well as the

boundedness of Ω̃s(s)xs(s), it follows that Ns(s) is a bounded function. Therefore, from −S being Hurwitz

by the assumption given in the theorem, it follows from Lemma 8.2.2 that zs(s) is bounded. Hence, z(t) and

therefore u(t) remain bounded for all t ∈ [0,T ). �

Remark 8.4.1 The proposed distributed control algorithm given by (8.13) along with (8.14) simultaneously

addresses the spatial and temporal constraints problem discussed in Section 8.3 for multiagent systems

regardless of the initial conditions of agents and without requiring a strict knowledge of the upper bounds of

the considered class of system uncertainties. Specifically, by using a time transformation function in (8.20),

this framework provides user-defined finite-time convergence properties for a given multiagent system with

uncertain agents in the sense that is limt→T
(
xi(t)− p(t)

)
= 0, i ∈ {1,2, . . . ,N}. The generalized restricted

potential functions utilized in the update law (8.14) also enforces each agent to stay close to the reference

trajectories during this user-defined interval, that is, |xi(t)− xri(t)|< εi, i ∈ {1,2, . . . ,N}.

Remark 8.4.2 As mentioned earlier, the reference model given by (8.10) is utilized to avoid a possible

centralized control design. Comparing (8.10) or, equivalently, (8.17) with (8.8), one can directly see that

when the error signal of the neighboring agents e j(t) are small, then (8.10) evolves close to the ideal

reference model given by (8.8). Now, it results from Theorem 8.4.1 that each error signal is bounded by a

user-defined parameter, i.e., |ei(t)|< εi; hence, the reference model given by (8.10) can be made arbitrarily

close by design to the ideal reference model given by (8.8) (i.e., by judicious selection of the user-defined

bounds εi, i ∈ {1,2, . . . ,N} and xri(0) = ri(0), i ∈ {1,2, . . . ,N} without loss of any generality).

Remark 8.4.3 For applications in which the system uncertainties are small, the result in [4] can be used

alternatively for achieving a user-defined finite-time convergence. However, as discussed in Section 8.1,

the proposed distributed control algorithm in this paper considerably goes beyond those results in that

here the system performance during the transient time is also enforced by user-defined parameters εi, i ∈

{1,2, . . . ,N}. Hence, the proposed algorithm can provide additional level of performance freedom for the

critical control systems.

300



www.manaraa.com

Leader

1

23

4

Figure 8.2: A multiagent system consisting of four agents on an undirected, connected circle graphG.

8.5 Illustrative Numerical Example

This section presents an illustrative numerical example to demonstrate the efficacy of the proposed

distributed control algorithm. Specifically, we consider a multiagent system consisting of four agents on an

undirected, connected circle graphG as depicted in Figure 8.2. The agent 2 has access to the position of a

time-varying leader given by p(t) = −1.5− 0.5sin(0.15t)+ 0.5cos(0.3t). We let the system uncertainties

in (8.6) be ω1 =−1,ω2 =−1,ω3 = 1,ω4 = 1, and set the initial positions of the agents randomly over the

interval [−0.5,0.5].

Considering a desired finite-time convergence of T = 10 seconds, one can implement the results

given in [4] (i.e., (8.13) without the term “ω̂i(t)xi(t)”) with α = 6 for addressing this temporal constraint

problem. However, as mentioned in Section 8.1, this framework is not able to enforce a (transient) perfor-

mance guarantee on the system error vector. Figures 8.3 and 8.4 show the finite-time convergence of the

agents using the control algorithm in [4]. The dashed line shows the position of the leader, solid lines show

the position of agents, and dotted lines show the ideal reference trajectories. We note that, although the

agents converge to the position of the leader in T = 10 seconds, they are deviating from their ideal reference

trajectories during the transient time. In particular, Figure 8.5 presents the evolution of ei(t) that is the

distance between the agent’s position and their corresponding reference position. It is clear from this figure

that if a performance constraint of εi = ε = 0.15, i∈ {1,2, . . . ,N}, is required such that the agents stay close

to the position of their reference model, the presented method in [4] is not able to meet such requirement.

We now implement the proposed distributed control algorithm in this paper (i.e., (8.13) along with

(8.14)). We use the time transformation function given in (8.20) with T = 10 in order to enforce the finite-
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time convergence of 10 seconds and, once again, set α = 6 that results in a positive-definite matrix S. In

addition, we set the projection bound imposed on each element of the parameter estimate to Ŵmax = 2 and

the adaptation rate to γi = 1, i ∈ {1,2, . . . ,N}. We also select the generalized restricted potential function
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Figure 8.3: Leader-follower performance with the finite-time control algorithm in [4] (T = 10 and α = 6).
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Figure 8.4: Control signals of agents with the finite-time control algorithm in [4] (T = 10 and α = 6).
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in Definition 8.2.2 as φi(|ei(t)|) = |ei(t)|2/
(
ε −|ei(t)|

)
, ei(t) ∈ Dε with εi = ε = 0.15, i ∈ {1,2, . . . ,N} to

guarantee |xi(t)− xri(t)|< 0.15, i ∈ {1,2, . . . ,N}.
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Figure 8.5: The evolution of ei(t) with the finite-time control algorithm in [4] (T = 10 and α = 6).
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Figure 8.6: Leader-follower performance with the proposed finite-time control algorithm proposed in
Theorem 8.4.1 (T = 10 and α = 6).
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Figure 8.7: Control signals of agents with the proposed finite-time control algorithm in Theorem 8.4.1
(T = 10 and α = 6).

Figures 8.6 and 8.7 present the performance of the proposed distributed control algorithm for ad-

dressing spatial and temporal constraints simultaneously. Specifically, these figures show that the finite-time

convergence is obtained at the user-defined finite time of T = 10 seconds. In addition, Figure 8.8 shows that

the position of each agent is kept within a close neighborhood of the position of their corresponding reference

trajectories by guaranteeing user-defined performance bounds |xi(t)− xri(t)| < 0.15, i ∈ {1,2, . . . ,N}. The

effective learning rate γiφdi(|ei(t)|), i ∈ {1,2, . . . ,N} and the estimation of the agentwise system uncertainty

ω̂i(t), i ∈ {1,2, . . . ,N} are also depicted in Figures 8.9 and 8.10, respectively. Finally, comparing Figure

8.7 with Figure 8.4, we note that the proposed distributed control algorithm results in less control effort in

accomplishing the considered task.

8.6 Conclusion

To simultaneously guarantee user-defined spatial performance and temporal convergence at a user-

defined time for uncertain multiagent systems, we presented a new distributed control algorithm. Specif-

ically, based on a distributed adaptive control law, which utilizes an error-dependent learning rate, the

proposed algorithm was shown to enforce user-defined performance bounds on the distance between the

uncertain state trajectories of agents and their distributed reference models. Furthermore, based on a
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time transformation approach, the proposed algorithm was shown to achieve a user-defined finite-time

convergence. These spatiotemporal constraints were addressed regardless of the initial conditions of agents
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Figure 8.8: The evolution of ei(t) with the proposed finite-time control algorithm in Theorem 8.4.1 (T = 10
and α = 6).
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Figure 8.9: The effective learning rate γiφdi(|ei(t)|) with the proposed finite-time control algorithm in
Theorem 8.4.1 (T = 10 and α = 6).
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Figure 8.10: The estimation of the system uncertainty ω̂i(t) with the proposed finite-time control algorithm
in Theorem 8.4.1 (T = 10 and α = 6).

and without requiring a strict knowledge of the upper bounds of the considered class of system uncertainties.

A future research direction can include extensions of the results presented in this paper to high-order

multiagent systems as well as application of our theoretical findings to real-world experiments.
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CHAPTER 9: CONCLUDING REMARKS AND FUTURE RESEARCH

9.1 Concluding Remarks

The research reported in this dissertation has investigated new model reference adaptive control

architectures for uncertain dynamical systems that are subject to spatiotemporal constraints, where the

presented control developments were rigorously established through system-theoretic methods to improve

the overall system stability, robustness, and performance characteristics.

Specifically, a set-theoretic model reference adaptive control architecture was proposed in Chapter

2 to address the challenge of enforcing user-defined spatial performance constraints. The proposed control

architecture was predicated on a generalized restricted potential function to auto-tune the adaptive control

design. The key characteristic of this new adaptation mechanism is to increase the effective learning rate

when the system error trajectories get close to the boundaries of a prescribed user-defined compact set that

represents the spatial constraint. Therefore, the system trajectories were enforced to evolve within this

compact set for all time, and importantly, without requiring a strict knowledge of the upper bounds of the

system uncertainties. As a byproduct, it was shown that an upper bound for the adaptive control signals

can be directly calculated without inducing (excessive) conservatism, which only depends on user-defined

design parameters.

The set-theoretic model reference adaptive control architecture for enforcing spatial constraints was

then generalized in Chapter 3 for uncertain dynamical systems having unstructured system uncertainties,

where these uncertainties are usually estimated by utilizing the universal function approximations within

a compact set. It was shown that the proposed controller was capable of keeping the system trajectories

within this compact set; hence, the universal function approximation property was always valid and the

overall system stability was achieved.

The results obtained for generalizing the set-theoretic model reference adaptive control architecture

reported in Chapter 4 provided several essential advances to this control framework. In particular, the

proposed control algorithms for enforcing time-varying performance bounds on the system error trajectories,
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enable a designer to control the closed-loop system performance as desired on different time intervals,

namely, the transient time interval and the steady-state time interval. In addition, for the case where

a subset of system states is more critical than the rest (especially when the number of system states is

large), a new extension to the set-theoretic model reference adaptive control architecture was proposed,

where it allows a control designer to weigh each system error vector elements independently for enforcing

componentwise performance guarantees. Moreover, for control of uncertain dynamical systems in the

presence of actuator dynamics, the ideal reference model was modified using the hedging method, resulting

in separation of the actuator dynamics and the adaptation process. A set-theoretic model reference adaptive

control architecture then ensured user-defined performance bounds on the system error, and importantly,

it was shown that the deviation of the uncertain dynamical system trajectories from the ideal reference

model trajectories can be controlled using this user-defined bound and the actuator bandwidth limit. In

addition to the exogenous disturbances and system uncertainties, actuator failures can also significantly

deteriorate the closed-loop system performance. To this end, a set-theoretic model reference adaptive control

architecture was introduced that not only compensates for these actuator failures but also it preserves user-

defined performance guarantees in the presence of finite number of actuator failures.

The efficacy of the proposed set-theoretic model reference adaptive control architecture was then

investigated through several applications in Chapter 5. In particular, this framework was applied to the

longitudinal and lateral-directional dynamics of the NASA generic transport model. The set-theoretic

model reference adaptive control architectures with constant and time-varying performance bounds were

then experimentally verified on an aerospace testbed configured as a conventional dual-rotor helicopter.

Through several rigorous analyses, our study also concluded that a dead-zone effect can be augmented

into the set-theoretic model reference adaptive control architecture to stop the adaptation process when the

system errors are small, while guaranteeing a user-defined performance bound. This was motivated by the

fact that small system errors generally contain high-frequency residual content of exogenous disturbances

and/or measurement noise. In the view of human-in-the-loop control architectures, the set-theoretic model

reference adaptive control was implemented at the inner loop system, where its error can propagate to the

outer-human loop. As a result, a sufficient stability condition was established for the overall physical system,

where this condition does not depend on the system uncertainties and can be assigned with user-defined

parameters.
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As described in the review of the classical finite-time control literature in Chapter 6, the convergence

time of these controllers varies by changing the initial conditions of the system, or a strict knowledge of

the upper bounds of the system uncertainties is required for the design. To address these challenges in

enforcing temporal constraint, a new distributed control algorithm was proposed for first-order and second-

order uncertain multiagent systems. This control architecture utilized a time transformation technique to

link a user-defined finite-time interval of interest to a stretched infinite-time interval. As a result, standard

system-theoretic tools were used for synthesis and analysis purposes in this infinite horizon, and eventually

the convergence guarantee was transferred back to the original finite-time interval. More importantly,

deviating from other approaches in the literature, this convergence guarantee was obtained regardless of

the initial conditions of the multiagent system and without requiring a knowledge of the upper bounds of the

system uncertainties. In addition, another type of system uncertainties known as sensor uncertainties was

investigated in the context of multiagent systems in Chapter 7. The proposed distributed control architecture

was capable of mitigating the effects of these sensor uncertainties, and achieving a desired leader-follower

objective.

Finally, a unified and novel control scheme was presented in Chapter 8 to simultaneously address the

spatial and temporal problem. While enforcing user-defined performance bounds on the distance between

the state trajectories of agents and the corresponding reference state trajectories, this distributed control

algorithm ensured that the agents converge to a time-varying leader within a user-defined finite time of

interest. Specifically, the term “user-defined” emphasis on key feature of this control design, that is the

achieved spatiotemporal guarantee was independent of the initial conditions of agents, and a strict knowledge

of the upper bounds of the considered class of system uncertainties was not required.

9.2 Future Research

As the results of this dissertation have highlighted, the user-defined system performance guarantees

incorporated within adaptive control architectures make these controllers unique candidates for control of

uncertain physical systems that are subject to spatial and temporal constraints. Yet, other considerations

can further improve these control architectures for real-world applications. In this section, some research

directions and suggestions for future work are presented to conclude this dissertation.

For the proposed set-theoretic model reference adaptive control, if the user-defined performance

bound is not assigned reasonably, the controller may fail due to system structural limits (i.e., the expected
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performance characteristics from the user are not practical). To this end, for example, a hybrid performance

enforcement technique can be investigated such that it can overrule the user-defined bound (temporarily)

to avoid failure of the control architecture in such extreme performance bound assignments. In addition,

actuator saturation can be a limiting factor in this framework. Although the actuator rate saturation was

indirectly addressed in Section 4.3, actuator amplitude saturation still needs to be investigated thoroughly in

this context.

While the results in Chapters 6 and 8 consider first-order and second-order multiagent systems,

these control algorithms can be generalized for higher order cases to capture a wider class of uncertain

multiagent systems.

Full-state feedback control was considered as a baseline control scheme throughout this dissertation,

extending these developments to output feedback control is another possible research direction. Further-

more, other than the presented experimental results, more experimentation can be conducted to further show

the efficacy of the proposed control architectures. Specifically, the author is in the process of implementing

the set-theoretic model reference adaptive control architecture in human-in-the-loop physical systems that

is presented in Section 5.4. Applications of the distributed control architectures presented in Sections 6 and

8 applied to the Khepera IV ground robots are also in progress.
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APPENDIX A: PROOF OF THEOREM 3.5.1

To show boundedness of the closed-loop dynamical system given by (3.14), (3.15), and (3.16),

consider the energy function V :Dε ×R(n+nc+s)×m×R→ R+ given by

V (e,W̃ , q̃)=φ(‖e‖P)+ γ
−1
1 tr(W̃Λ

1/2)T(W̃Λ
1/2)+ γ

−1
2 q̃2

λmin(Λ), (A.1)

where Dε , {e(t) : ‖e(t)‖P < ε} is chosen as described in Remark 3.3.1, and P ∈ Rn×n
+ is a solution of the

Lyapunov equation in (3.11) with R ∈ Rn×n
+ . Note that V (0,0,0) = 0 and V

(
e,W̃ , q̃

)
> 0 for all

(
e,W̃ , q̃

)
6=

(0,0,0). Specifically, the time derivative of (A.1) along the closed-loop system trajectories (3.14), (3.15)

and (3.16) is given by

V̇
(
e(t),W̃ (t), q̃(t)

)

= 2φd(‖e(t)‖P)eT(t)Pė(t)+2γ
−1
1 trW̃ T(t)

(
γ1Projm

(
Ŵ (t),φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

)
−Ẇ (t)

)
Λ

+2γ
−1
2 q̃(t) ˙̃q(t)λmin(Λ)

= 2φd(‖e(t)‖P)eT(t)PAre(t)−2φd(‖e(t)‖P)eT(t)PBΛW̃ T(t)σ
(
x(t)
)

+2trW̃ T(t)Projm
(

Ŵ (t),φd(‖e(t)‖P)σ
(
x(t)
)
eT(t)PB

)
Λ−2γ

−1
1 trW̃ T(t)Ẇ (t)Λ+2γ

−1
2 q̃(t) ˙̃q(t)λmin(Λ)

+2φd(‖e(t)‖P)eT(t)PBΛbig(εN(x(t))− v(t)
)

= 2φd(‖e(t)‖P)eT(t)PAre(t)−2tr
(
Ŵ T(t)−W T(t)

)(
φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

−Projm
(
Ŵ (t),φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

))
Λ−2γ

−1
1 trW̃ T(t)Ẇ (t)Λ

+2γ
−1
2 q̃(t) ˙̃q(t)λmin(Λ)+2φd(‖e(t)‖P)eT(t)PBΛ

(
εN(x(t))− v(t)

)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d +2φd(‖e(t)‖P)eT(t)PBΛ
(
εN(x(t))− v(t)

)
+2γ

−1
2 q̃(t) ˙̃q(t)λmin(Λ)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d +2φd(‖e(t)‖P)eT(t)PBΛεN(x(t))

−2φd(‖e(t)‖P)eT(t)PBΛv(t)+2γ
−1
2 q̃(t) ˙̃q(t)λmin(Λ), (A.2)

where d , 2γ
−1
1 w̃ ẇ‖Λ‖2 and w̃ = Ŵmax +w.
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Using v(t) from (3.12) and λmin(Ψ)xT tanh(x)≤ xTΨ tanh(x)≤ λmax(Ψ)xT · tanh(x) for any diagonal

matrix Ψ ∈ Dm×m and any vector x ∈ Rm yields

V̇
(
e(t),W̃ (t), q̃(t)

)
≤ −φd(‖e(t)‖P)eT(t)Re(t)+d +2φd(‖e(t)‖P)‖eT(t)PB‖2

·λmax(Λ)ε
∗−2φd(‖e(t)‖P)eT(t)PB tanh

(
φd(‖e(t)‖P)

·BTPe(t)
)
λmin(Λ)q̂(t)+2γ

−1
2 q̃(t) ˙̃q(t)λmin(Λ). (A.3)

From the property given in Remark 3.2.2 with η = φd(‖e(t)‖P)BTPe(t), (A.3) can be further written as

V̇
(
e(t),W̃ (t), q̃(t)

)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d +2
(
L+φd(‖e(t)‖P)eT(t)PB tanh

(
φd(‖e(t)‖P)

·BTPe(t)
))

λmax(Λ)ε
∗−2φd(‖e(t)‖P)eT(t)PB tanh

(
φd(‖e(t)‖P)BTPe(t)

)

·λmin(Λ)q̂(t)+2γ
−1
2 q̃(t) ˙̃q(t)λmin(Λ)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d +2Lλmax(Λ)ε
∗−2φd(‖e(t)‖P)eT(t)PB

· tanh
(
φd(‖e(t)‖P)BTPe(t)

)
q̃(t)λmin(Λ)+2γ

−1
2 q̃(t) ˙̃q(t)λmin(Λ)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d2 +2
(
q̂(t)−q

)(
Proj

(
q̂(t),φd(‖e(t)‖P)eT(t)PB

· tanh
(
φd(‖e(t)‖P)BTPe(t)

)
−ξ q̂(t)

)
−φd(‖e(t)‖P)eT(t)PB

· tanh
(
φd(‖e(t)‖P)BTPe(t)

)
+ξ q̂(t)

)
λmin(Λ)−2ξ q̂(t)q̃(t)λmin(Λ)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d2−2ξ
(
q̃(t)+q

)
q̃(t)λmin(Λ)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d2−2ξ q̃2(t)λmin(Λ)−2ξ qq̃(t)λmin(Λ)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d2−2ξ q̃2(t)λmin(Λ)+ξ (q2 + q̃2(t))λmin(Λ)

≤ −φd(‖e(t)‖P)eT(t)Re(t)+d3, (A.4)

where d2 , d +2Lλmax(Λ)ε
∗ and d3 , d2 +ξ q2λmin(Λ).

Next, we rewrite (A.4) as

V̇
(
e(t),W̃ (t), q̃(t)

)

≤ −αφd(‖e(t)‖P)eT(t)Pe(t)+d3 +
1
2

αφ(‖e(t)‖P)−
1
2

αφ(‖e(t)‖P)
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≤ −1
2

αV (e,W̃ , q̃)−α

[
φd(‖e(t)‖P)eT(t)Pe(t)− 1

2
φ(‖e(t)‖P)

]
+µ, (A.5)

and it now follows from vi) in Definition 3.2.2 that V̇
(
e(t),W̃ (t), q̃(t)

)
≤−1

2 αV (e(t), W̃ (t), q̃(t))+µ , where

α , λmin(R)
λmax(P)

and µ , 1
2 α
(
γ
−1
1 w̃2‖Λ‖2 + γ

−1
2 (q̂2

max +q2)λmin(Λ)
)
+d3. The boundedness of the closed-loop

dynamical system given by (3.14), (3.15) and (3.16) as well as the strict performance bound on the system

error given by (3.17) is now immediate by applying Lemma 1 of [25] and [23]. �
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APPENDIX B: PROOF OF COROLLARY 3.5.1

From the proof of Theorem 3.5.1, it follows that V (e,W̃ , q̃) is upper bounded by Vmax =max
{

V0,
2µ

α

}
.

Now, using (A.1), it follows that φ(‖e(t)‖P) + γ
−1
1 tr(W̃ (t) Λ1/2)T(W̃ (t)Λ1/2) + γ

−1
2 q̃2(t)λmin(Λ) ≤ Vmax,

t ≥ 0, and hence, φ(‖e(t)‖P) ≤ Vmax, t ≥ 0. Utilizing the structure of the candidate generalized restricted

potential function given in the statement of this corollary, one can write ‖e(t)‖P ∈ {‖e(t)‖P ∈ R : 0 ≤

‖e(t)‖P ≤ ē}, t ≥ 0, and it can be readily shown that ē < ε , where ē = (−Vmax +
√

V 2
max +4Vmax ε)/2.

Using the fact that φd(‖e(t)‖P), t ≥ 0, is a strictly increasing function, one can calculate its lower and upper

bound as φd(0) ≤ φd(‖e(t)‖P) ≤ φd(ē), t ≥ 0, which yields to the result. �
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APPENDIX C: PROOF OF COROLLARY 3.5.2

To show boundedness of the closed-loop dynamical system (3.14) and (3.15), consider the energy

function V :Dε ×R(n+nc+s)×m→ R+ given by

V (e,W̃ )=φ(‖e‖P)+ γ
−1
1 tr(W̃Λ

1/2)T(W̃Λ
1/2). (C.1)

Note that V (0,0) = 0 and V
(
e,W̃

)
> 0 for all

(
e,W̃

)
6= (0,0). The time derivative of (C.1) along the closed-

loop system trajectories (3.14) and (3.15) is

V̇
(
e(t),W̃ (t)

)

=2φd(‖e(t)‖P)eT(t)Pė(t)+2γ
−1
1 trW̃ T(t)

(
γ1Projm

(
Ŵ (t),φd(‖e(t)‖P)

·σ
(
x(t)
)
eT(t)PB

)
−Ẇ (t)

)
Λ

=2φd(‖e(t)‖P)eT(t)PAre(t)−2tr
(
Ŵ T(t)−W T(t)

)(
φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)

·PB−Projm
(
Ŵ (t),φd(‖e(t)‖P)σ

(
x(t)
)
eT(t)PB

))
Λ−2γ

−1
1 trW̃ T(t)Ẇ (t)Λ

+2φd(‖e(t)‖P)eT(t)PBΛ
(
εN(x(t))− v(t)

)

≤−φd(‖e‖P)eT(t)Re(t)+d +2φd(‖e‖P)eT(t)PBΛ
(
εN(x(t))− v(t)

)
, (C.2)

where d = 2γ
−1
1 w̃ ẇ‖Λ‖2 and w̃= Ŵmax+w. Now, substituting v(t) from (3.20) and using λmin(Ψ)xT tanh(x)

≤ xTΨ tanh(x) ≤ λmax(Ψ)xT tanh(x) for any diagonal matrix Ψ ∈ Dm×m and any vector x ∈ Rm, and the

bounds given in (3.18) and (3.19), one can obtain

V̇
(
e(t),W̃ (t)

)
≤−φd(‖e(t)‖P)eT(t)Re(t)+d +2φd(‖e(t)‖P)‖eT(t)PB‖c1c3

−2φd(‖e(t)‖P)eT(t)PB tanh
(
φd(‖e(t)‖P)BTPe(t)

)
c1c3. (C.3)
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Next, from the property stated in Remark 3.2.2 with η = φd(‖e(t)‖P)BTPe(t), one can write

V̇
(
e(t),W̃ (t)

)
≤−φd(‖e(t)‖P)eT(t)Re(t)+d +2

(
L+φd(‖e(t)‖P)eT(t)PB tanh

(
φd(‖e(t)‖P)BTPe(t)

))
c1c3

−2φd(‖e(t)‖P)eT(t)PB tanh
(
φd(‖e(t)‖P)BTPe(t)

)
c1c3

≤−φd(‖e(t)‖P)eT(t)Re(t)+dc (C.4)

where dc , d +2Lc1c3. Now, (C.4) can be rewritten as

V̇
(
e(t),W̃ (t)

)
≤−αφd(‖e(t)‖P)eT(t)Pe(t)+dc +

1
2

αφ(‖e(t)‖P)−
1
2

αφ(‖e(t)‖P)

≤−1
2

αV (e,W̃ )−α

[
φd(‖e‖P)eT(t)Pe(t)− 1

2
φ(‖e‖P)

]
+µc, (C.5)

and it follows from vi) in Definition 3.2.2 that V̇
(
e(t),W̃ (t)

)
≤ −1

2 αV (e,W̃ )+ µc, where α , λmin(R)
λmax(P)

and

µc , 1
2 αγ

−1
1 w̃2‖Λ‖2 + dc. Similar to the proof of Theorem 3.5.1, the boundedness of the closed-loop

dynamical system given by (3.14) and (3.15) as well as the strict performance bound on the system error

given by (3.21) is now immediate by applying Lemma 1 of [25] and [23]. �
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APPENDIX D: OBTAINING (4.2) FROM (4.1)

This appendix summarizes details on how (4.2) is rewritten from (4.1). For this purpose, we first

introduce a widely-adopted system uncertainty parameterization [28–30].

Assumption D.1 The system uncertainty δp(t,xp(t)) appearing in the uncertain dynamical system given by

(4.1) is parameterized as

δp(t,xp) = W T
p (t)σp(xp), (D.1)

where Wp(t)∈Rs×m, t ≥ 0, is a bounded unknown weight matrix (i.e., ‖Wp(t)‖F ≤wp, t ≥ 0) with a bounded

time rate of change (i.e., ‖Ẇp(t)‖F ≤ ẇp, t ≥ 0) and σp : Rnp → Rs is a known basis function of the form

σp(xp) = [σp1(xp),σp2(xp), . . . ,σps(xp)]
T.

Remark D.1 As it is often done in model reference adaptive control applications (see, for example, [1] and

[32]), it is of practice to let the first element of the basis function be a constant (i.e., σp1(xp) = η , η ∈ R)

in order to capture the effects of exogenous disturbances in the parameterization given by (D.1). Thus, this

parameterization is sufficient to capture not only system uncertainties but also exogenous disturbances.

For addressing command following, we next let c(t) ∈ Rnc , t ≥ 0, be a given command and xc(t) ∈

Rnc , t ≥ 0, be the integrator state that satisfies

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0, t ≥ 0. (D.2)

In (D.2), Ep ∈ Rnc×np allows the selection of a subset of xp(t), t ≥ 0, to follow c(t), t ≥ 0. Moreover, as

standard, we assume that c(t) is bounded and piecewise continuous. Now, denoting the augmented state

vector as x(t), [xT
p (t), xT

c (t)]
T∈Rn, t ≥ 0, and defining
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A ,




Ap 0np×nc

Ep 0nc×nc


 ∈ Rn×n, (D.3)

B ,

[
BT

p 0T
nc×m

]T

∈ Rn×m, (D.4)

Br ,

[
0T

np×nc
−Inc×nc

]T

∈ Rn×nc , (D.5)

where n=np +nc, it follows from (4.1) and (D.2) that

ẋ(t) = Ax(t)+BΛu(t)+BW T
p (t)σp(xp(t))+Brc(t), x(0) = x0, t ≥ 0. (D.6)

For the augmented system dynamics given by (D.6), consider the feedback control law given by

u(t) = un(t)+ua(t), t ≥ 0, (D.7)

where un(t) ∈ Rm, t ≥ 0, is the nominal control signal and ua(t) ∈ Rm, t ≥ 0, is the adaptive control signal.

Now, let the nominal control signal be given by

un(t) =−Kx(t), t ≥ 0, (D.8)

such that Ar, A−BK, K ∈Rm×n, is Hurwitz. As a consequence, for a given R∈Rn×n
+ , there exists P∈Rn×n

+

that satisfies the Lyapunov equation given by

0 = AT
r P+PAr +R. (D.9)

Now using (D.7) and (D.8) in (D.6), one can readily write (4.2).
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APPENDIX E: FURTHER REMARKS ON SECTIONS 4.1.3.1 AND 4.1.3.2

We note that Theorem 4.1.1 requires the additional assumption that λmin(PBΛBTP) is nonzero.

However, for the case where λmin(PBΛBTP) is zero, one can readily show that if λmin(R)−2ελmax(P)> 0

holds with ε ,max
t∈R+

ε̇(t)
ε(t) , then the result of Theorem 4.1.1 still holds and the user-defined time-varying system

performance bound ε(t) can be enforced on the system error trajectories (i.e., ‖e(t)‖P < ε(t)). For the case

where neither λmin(PBΛBTP) 6= 0 nor λmin(R)− 2ελmax(P) > 0 holds, one can alternatively use Theorem

4.1.2 for enforcing a user-defined time-varying bound without any of the aforementioned assumptions.

336



www.manaraa.com

APPENDIX F: NECESSARY DEFINITIONS

In this appendix, we state the necessary definitions used in this paper. We start with the definition

of the projection operator. For this propose, let Ω =
{

θ ∈ Rn : (θ min
i ≤ θi ≤ θ max

i )i=1,2,··· ,n
}

be a convex

hypercube in Rn, where (θ min
i , θ max

i ) represent the minimum and maximum bounds for the ith component of

the n-dimensional parameter vector θ . In addition, define a second hypercube by Ων = {θ ∈Rn : (θ min
i +ν ≤

θi ≤ θ max
i − ν)i=1,2,··· ,n}, for a sufficiently small positive constant ν , such that Ων ⊂ Ω. The projection

operator Proj : Rn×Rn → Rn is then componentwise defined by Proj(θ ,y) ,
(
(θ max

i − θi)/ν
)
yi if θi >

θ max
i −ν and yi > 0; Proj(θ ,y),

(
(θi−θ min

i )/ν
)
yi if θi < θ min

i +ν and yi < 0; and Proj(θ ,y)= yi otherwise;

where y ∈ Rn [30]. Building on this definition, it follows that

(θ −θ
∗)T (Proj(θ ,y)− y)≤ 0, θ

∗ ∈Ων , (F.1)

holds [30, 80]. Note that the definition of the projection operator can also be extended to matrices as

Projm(Θ,Y )=
(
Proj(col1(Θ),col1(Y )), . . . , Proj(colm(Θ), colm(Y ))

)
, where Θ∈Rn×m, Y ∈Rn×m and coli(·)

denotes ith column operator. Now, for a given matrix Θ∗, tr
[
(Θ−Θ∗)T(Projm(Θ, Y )−Y )

]
= ∑

m
i=1

[
coli(Θ−

Θ∗)T(Proj(coli(Θ), coli(Y ))− coli(Y ))
]
≤ 0 follows from (F.1).

Next, we state the definition of the generalized restricted potential functions. For a given z∈Rp and

H ∈ Rp×p
+ , let ‖z‖H =

√
zTHz be a weighted Euclidean norm. We say φ(‖z‖H), φ : R→ R, is a generalized

restricted potential function (generalized barrier Lyapunov function) on the setDε ,
{

z : ‖z‖H ∈ [0,ε)
}

with

ε ∈ R+ being a user-defined parameter, if the following statements hold:

i) If ‖z‖H = 0, then φ(‖z‖H) = 0.

ii) If z ∈ Dε and ‖z‖H 6= 0, then φ(‖z‖H)> 0.

iii) If ‖z‖H→ ε , then φ(‖z‖H)→ ∞.

iv) φ(‖z‖H) is continuously differentiable on Dε .
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v) If z ∈ Dε , then φd(‖z‖H)> 0, where

φd(‖z‖H),
dφ(‖z‖H)

d‖z‖2
H

. (F.2)

vi) If z ∈ Dε , then

2φd(‖z‖H)‖z‖2
H−φ(‖z‖H)> 0. (F.3)

As noted in [1], this definition generalizes the definition of the restricted potential functions (barrier Lya-

punov functions) used by, for example, the authors of [21–26, 107].
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APPENDIX G: MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers,

Rn denotes the set of n×1 real column vectors, Rn×m denotes the set of n×m real matrices, R+ denotes the

set of positive real numbers, Rn×n
+ (resp., Rn×n

+ ) denotes the set of n×n positive-definite (resp., nonnegative-

definite) real matrices, Z+ (resp., Z+) denotes the set of positive (resp., nonnegative) integers, 0n denotes

the n×1 zero vector, 1n denotes the n×1 ones vector, 0n×m denotes the n×m zero matrix, and “,” denotes

equality by definition. In addition, we write (·)T for the transpose operator, (·)−1 for the inverse operator,

and det(·) for the determinant operator, ‖ ·‖2 for the Euclidean norm. Furthermore, we write λmin(A) (resp.,

λmax(A)) for the minimum (resp., maximum) eigenvalue of the square matrix A, λi(A) for the ith eigenvalue

of the square matrix A (with eigenvalues ordered from minimum to maximum value), [A]i j for the (i, j)th

entry of the matrix A, and x (resp., x) for the lower bound (resp., upper bound) of a bounded signal x(t)∈Rn,

that is, x≤ ‖x(t)‖2 (resp., ‖x(t)‖2 ≤ x).

Next, we recall some basic notions from graph theory, where we refer the reader to [176, 177]

for further details. Specifically, graphs are broadly adopted in the multiagent systems literature to encode

interactions between networked systems. An undirected graph G is defined by a set VG = {1, . . . ,N} of

nodes and a set EG ⊂ VG×VG of edges. If (i, j) ∈ EG, then nodes i and j are neighbors and the neighboring

relation is indicated by i ∼ j. The degree of a node is given by the number of its neighbors. Letting di

denote the degree of node i, then the degree matrix of a graph G, denoted by D(G) ∈ RN×N , is given by

D(G) , diag [d] , where d = [d1, . . . ,dN ]
T. A path i0i1 · · · iL of a graphG is a finite sequence of nodes such

that ik−1 ∼ ik, k = 1, . . . ,L, and if every pair of distinct nodes has a path, then the graph G is connected.

We write A(G) ∈ RN×N for the adjacency matrix of a graph G defined by [A(G)]i j , 1, if (i, j) ∈ EG, and

[A(G)]i j , 0, otherwise, and B(G) ∈ RN×M for the (node-edge) incidence matrix of a graph G defined by

[B(G)]i j , 1, if node i is the head of edge j, [B(G)]i j ,−1, if node i is the tail of edge j, and [B(G)]i j , 0,

otherwise, where M is the number of edges, i is an index for the node set, and j is an index for the edge set.
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The graph Laplacian matrix, denoted by L(G) ∈ RN×N
+ , is defined by L(G),D(G)−A(G) or,

equivalently, L(G) = B(G)B(G)T, and the spectrum of the graph Laplacian of a connected, undirected

graph G can be ordered as 0 = λ1(L(G)) < λ2(L(G)) ≤ ·· · ≤ λN(L(G)), with 1N being the eigenvector

corresponding to the zero eigenvalue λ1(L(G)), and L(G)1N = 0N and eL(G)1N = 1N .

In this paper, we model a given multiagent system as a connected, undirected graphG, where nodes

and edges respectively represent agents and inter-agent communication links. The following results are

needed in this paper.

Remark G.1 We use the notion from Section 1.1.1.4 of [179]. Specifically, let ξ (t) denote a solution to the

dynamical system

ẋ(t) = f (t,x(t)), x(0) = x0. (G.1)

In addition, let t = θ(s) denote a time transformation, where θ(s) is a strictly increasing and continuously

differentiable function, and define ψ(s) = ξ (t). Then,

ψ
′(s) = θ

′(s) f (θ(s),ψ(s)), ψ(θ−1(0)) = x0, (G.2)

where ψ ′(s), dψ(s)/ds, and θ ′(s), dθ(s)/ds.

Remark G.2 For the sake of simplicity, considering the time transformation t = θ(s) and any signal η(t),

we write ηs(s) to denote the transformed signal in the infinite interval s; that is ηs(s), η(θ(s)).

Lemma G.1 (Lemma 3.3, [178]) Let K = diag(k),k = [k1,k2, . . . , kN ]
T, ki ∈ Z+, i = 1, . . . ,N, and assume

that at least one element of k is nonzero. Then, F(G) , L(G) +K ∈ RN×N
+ and det(F(G)) 6= 0 for the

Laplacian of a connected and undirected graph1.

1It follows from Lemma G.1 that −F(G) is a symmetric and Hurwitz matrix and it satisfies R = F(G)P+PF(G), for a given
R ∈ RN×N

+ .
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